41 research outputs found
Effects of Aspirin on Endothelial Function and Hypertension
PURPOSE OF REVIEW: Endothelial dysfunction is intimately related to the development of various cardiovascular diseases, including hypertension, and is often used as a target for pharmacological treatment. The scope of this review is to assess effects of aspirin on endothelial function and their clinical implication in arterial hypertension. RECENT FINDINGS: Emerging data indicate the role of platelets in the development of vascular inflammation due to the release of proinflammatory mediators, for example, triggered largely by thromboxane. Vascular inflammation further promotes oxidative stress, diminished synthesis of vasodilators, proaggregatory and procoagulant state. These changes translate into vasoconstriction, impaired circulation and thrombotic complications. Aspirin inhibits thromboxane synthesis, abolishes platelets activation and acetylates enzymes switching them to the synthesis of anti-inflammatory substances. SUMMARY: Aspirin pleiotropic effects have not been fully elucidated yet. In secondary prevention studies, the decrease in cardiovascular events with aspirin outweighs bleeding risks, but this is not the case in primary prevention settings. Ongoing trials will provide more evidence on whether to expand the use of aspirin or stay within current recommendations
The correlationship between the metabolizable energy content, chemical composition and color score in different sources of corn DDGS
Leptin-deficient obesity prolongs survival in a murine model of myelodysplastic syndrome
Obesity enhances the risk of developing myelodysplastic syndromes. However, the effect of obesity on survival is unclear. Obese people present with monocytosis due to inflammatory signals emanating from obese adipose tissue. We hypothesized that obesity-induced myelopoiesis would promote the transition of myelodysplastic syndrome to acute myeloid leukemia and accelerate mortality in obesity. Obese Ob/Ob mice or their lean littermate controls received a bone marrow transplant from NUP98-HOXD13 transgenic mice, a model of myelodysplastic syndrome. The metabolic parameters of the mice were examined throughout the course of the study, as were blood leukocytes. Myeloid cells were analyzed in the bone, spleen, liver and adipose tissue by flow cytometry halfway through the disease progression and at the endpoint. Survival curves were also calculated. Contrary to our hypothesis, transplantation of NUP98-HOXD13 bone marrow into obese recipient mice significantly increased survival time compared with lean recipient controls. While monocyte skewing was exacerbated in obese mice receiving NUP98-HOXD13 bone marrow, transformation to acute myeloid leukemia was not enhanced. Increased survival of obese mice was associated with a preservation of fat mass as well as increased myeloid cell deposition within the adipose tissue, and a concomitant reduction in detrimental myeloid cell accumulation within other organs. The study herein revealed that obesity increases survival in animals with myelodysplastic syndrome. This may be due to the greater fat mass of Ob/Ob mice, which acts as a sink for myeloid cells, preventing their accumulation in other key organs, such as the liver
Ancient ruins of the future
The Herculea Telesina in the region of Campania is certainly not a fragment but an almost continuous defensive wall. The strong point of this particular project for siege defense being geometric criteria that have remained practically unchanged even when the weapons themselves evolved. The ruins offer a vast repertory of useful signs: the contemporary scholar can not only acquire the teachings of a culture that was much advanced compared to the Roman world, but by observing the angles and vectors can ponder the absence of any changes in the measurements that were subordinated to tactics and thus to human needs. Decisive factors that elevate the walls of Telesia to the level of a cultural testament still to be discovered
Systematic profiling of conditional degron tag technologies for target validation studies
Conditional degron tags (CDTs) are a powerful tool for target validation that combines the kinetics and reversible action of pharmacological agents with the generalizability of genetic manipulation. However, successful design of a CDT fusion protein often requires a prolonged, ad hoc cycle of construct design, failure, and re-design. To address this limitation, we report here a system to rapidly compare the activity of five unique CDTs: AID/AID2, IKZF3d, dTAG, HaloTag, and SMASh. We demonstrate the utility of this system against 16 unique protein targets. We find that expression and degradation are highly dependent on the specific CDT, the construct design, and the target. None of the CDTs leads to efficient expression and/or degradation across all targets; however, our systematic approach enables the identification of at least one optimal CDT fusion for each target. To enable the adoption of CDT strategies more broadly, we have made these reagents, and a detailed protocol, available as a community resource
Avadomide Induces Degradation of ZMYM2 Fusion Oncoproteins in Hematologic Malignancies
Thalidomide analogs exert their therapeutic effects by binding to the CRL4CRBN E3 ubiquitin ligase, promoting ubiquitination and subsequent proteasomal degradation of specific protein substrates. Drug-induced degradation of IKZF1 and IKZF3 in B-cell malignancies demonstrates the clinical utility of targeting disease-relevant transcription factors for degradation. Here, we found that avadomide (CC-122) induces CRBN-dependent ubiquitination and proteasomal degradation of ZMYM2 (ZNF198), a transcription factor involved in balanced chromosomal rearrangements with FGFR1 and FLT3 in aggressive forms of hematologic malignancies. The minimal drug-responsive element of ZMYM2 is a zinc-chelating MYM domain and is contained in the N-terminal portion of ZMYM2 that is universally included in the derived fusion proteins. We demonstrate that avadomide has the ability to induce proteasomal degradation of ZMYM2-FGFR1 and ZMYM2-FLT3 chimeric oncoproteins, both in vitro and in vivo. Our findings suggest that patients with hematologic malignancies harboring these ZMYM2 fusion proteins may benefit from avadomide treatment
Inhibition of METTL3 Results in a Cell-Intrinsic Interferon Response That Enhances Antitumor Immunity
UNLABELLED: Therapies that enhance antitumor immunity have altered the natural history of many cancers. Consequently, leveraging nonoverlapping mechanisms to increase immunogenicity of cancer cells remains a priority. Using a novel enzymatic inhibitor of the RNA methyl-transferase METTL3, we demonstrate a global decrease in N6-methyladenosine (m6A) results in double-stranded RNA (dsRNA) formation and a profound cell-intrinsic interferon response. Through unbiased CRISPR screens, we establish dsRNA-sensing and interferon signaling are primary mediators that potentiate T-cell killing of cancer cells following METTL3 inhibition. We show in a range of immunocompetent mouse models that although METTL3 inhibition is equally efficacious to anti-PD-1 therapy, the combination has far greater preclinical activity. Using SPLINTR barcoding, we demonstrate that anti-PD-1 therapy and METTL3 inhibition target distinct malignant clones, and the combination of these therapies overcomes clones insensitive to the single agents. These data provide the mole-cular and preclinical rationale for employing METTL3 inhibitors to promote antitumor immunity in the clinic. SIGNIFICANCE: This work demonstrates that METTL3 inhibition stimulates a cell-intrinsic interferon response through dsRNA formation. This immunomodulatory mechanism is distinct from current immunotherapeutic agents and provides the molecular rationale for combination with anti-PD-1 immune-checkpoint blockade to augment antitumor immunity. This article is featured in Selected Articles from This Issue, p. 2109
