85 research outputs found

    Pleural mesothelioma in a nine-month-old dog

    Get PDF
    This paper reports on an unusual case of pleural epitheloid mesothelioma in a nine-month-old male, mixed breed dog. The dog was presented in-extremis and, on post mortem examination, multiple, exophytic, frequently pedunculated, yellowish-red, soft to firm masses ranging from 3 mm to 6 cm in diameter were diffusely distributed over, and attached to, the pericardial and parietal pleural surfaces. Microscopically, these masses consisted of round to partially polygonalshaped, anaplastic cells with minimal cytoplasm and hyperchromatic nuclei covering papillomatous projections or as part of more densely cellular masses. A supporting fibrovascular stroma and mitotic figures were also evident. Constituent tumour cells were labeled positively with antibodies against both vimentin and cytokeratin. In contrast, the same cells exhibited equivocal labeling with an antibody directed against calretinin antigen and did not label with antibodies against carcinoembryonic antigen (CEA) and milk fat globule-related antigen (MFGRA). Such tumours are rare in dogs, particularly in such a young animal

    Characterisation and internalisation of recombinant humanised HMFG-1 antibodies against MUC1

    Get PDF
    The humanised HMFG-1 immunoglobulin has been extensively developed as a clinical immunotherapeutic agent for MUC1 expressing tumours. We have constructed a single-chain Fv (scFv) and Fab fragment from this antibody and shown that both these species retain their specificity for MUC1. The scFv was less stable and less soluble than the Fab. Detailed analyses of the binding kinetics of the whole IgG and Fab fragment show that the affinity for MUC1 synthetic peptides is low (approximately 100 n for the IgG and 10 μ for the Fab), with particularly low but similar dissociation rate constants (0.031–0.095 s−1). Binding to native antigen on the cell surface is over two orders of magnitude better. Confocal immunofluorescence microscopy shows that both the IgG and Fab are internalised rapidly (the IgG is internalised within 15 min) and colocalise to early endosomes. This work provides an appreciation of the binding, internalising and trafficking kinetics, important for the development of future therapeutics based on this antibody

    Specific binding of TES-23 antibody to tumour vascular endothelium in mice, rats and human cancer tissue: a novel drug carrier for cancer targeting therapy

    Get PDF
    The tissue distribution of anti-tumour vascular endothelium monoclonal antibody (TES-23) produced by immunizing with plasma membrane vesicles from isolated rat tumour-derived endothelial cells (TECs) was assessed in various tumour-bearing animals. Radiolabelled TES-23 dramatically accumulated in KMT-17 fibrosarcoma, the source of isolated TECs after intravenous injection. In Meth-A fibrosarcoma, Colon-26 adenocarcinoma in BALB/c mice and HT-1080 human tumour tissue in nude mice, radioactivities of 125I-labelled TES-23 were also up to 50 times higher than those of control antibody with little distribution to normal tissues. The selective recognition of TES-23 to TECs was competitively blocked by preadministration of unlabelled TES-23 in vivo. Furthermore, immunostaining of human tissue sections showed specific binding of TES-23 on endothelium in oesophagus cancers. These results indicate that tumour vascular endothelial cells express common antigen in different tumour types of various animal species. In order to clarify the efficacy of TES-23 as a drug carrier, an immunoconjugate, composed of TES-23 and neocarzinostatin, was tested for its anti-tumour effect in rats bearing KMT-17 fibrosarcomas. The immunoconjugate (TES-23-NCS) caused marked regression of the tumour, accompanied by haemorrhagic necrosis. Thus, from a clinical view, TES-23 would be a novel drug carrier because of its high specificity to tumour vascular endothelium and its application to many types of cancer. © 1999 Cancer Research Campaig

    Dual-Labeling Strategies for Nuclear and Fluorescence Molecular Imaging: A Review and Analysis

    Get PDF
    Molecular imaging is used for the detection of biochemical processes through the development of target-specific contrast agents. Separately, modalities such as nuclear and near-infrared fluorescence (NIRF) imaging have been shown to non-invasively monitor disease. More recently, merging of these modalities has shown promise owing to their comparable detection sensitivity and benefited from the development of dual-labeled imaging agents. Dual-labeled agents hold promise for whole-body and intraoperative imaging and could bridge the gap between surgical planning and image-guided resection with a single, molecularly targeted agent. In this review, we summarized the literature for dual-labeled antibodies and peptides that have been developed and have highlighted key considerations for incorporating NIRF dyes into nuclear labeling strategies. We also summarized our findings on several commercially available NIRF dyes and offer perspectives for developing a toolkit to select the optimal NIRF dye and radiometal combination for multimodality imaging

    Monoclonal antibodies for imaging and therapy

    No full text
    corecore