1,566 research outputs found

    Last days in the old radiation laboratory (ORL), Berkeley, California, 1954

    Get PDF
    Govindjee, the founding editor of the Historical Corner of Photosynthesis Research, invited me 3 years ago to tell the story of why I left Melvin Calvin’s laboratory in the mid 1950s long before the 1961 Nobel Prize in Chemistry was awarded to Calvin for the path of carbon in photosynthesis. I have already written my scientific perspective on this topic (see Benson (Photosynth Res 73:29–49, 2002); also see Bassham (Photosynth Res 76:35–52, 2003) as he was also a major player in this research). Here, I present my recollections of my last days in the old radiation laboratory (ORL) at Berkeley, California. References have been added by Govindjee for the benefit of the readers

    Visual attention modulates the into ration of goal-relevant evidence and not value

    Get PDF
    When choosing between options, such as food items presented in plain view, people tend to choose the option they spend longer looking at. The prevailing interpretation is that visual attention increases value. However, in previous studies, ‘value’ was coupled to a behavioural goal, since subjects had to choose the item they preferred. This makes it impossible to discern if visual attention has an effect on value, or, instead, if attention modulates the information most relevant for the goal of the decision-maker. Here, we present the results of two independent studies—a perceptual and a value-based task—that allow us to decouple value from goal-relevant information using specific task-framing. Combining psychophysics with computational modelling, we show that, contrary to the current interpretation, attention does not boost value, but instead it modulates goal-relevant information. This work provides a novel and more general mechanism by which attention interacts with choice

    Advanced mineral carbonation: An approach to accelerate CO\u3csub\u3e2\u3c/sub\u3e sequestration using steel production wastes and integrated fluidized bed reactor

    Get PDF
    © Springer Nature Switzerland AG 2019. Industrial pollution is the major source of global warming through emissions of greenhouse gases (GHG’s) like CO2, CH4, and NO2, causing noticeable increasing in the world’s temperature. Mineral carbonation is a method of carbon capture and storage (CCS) through which CO2 is sequestered with advantage of permanent sequestration and no need for post-storage surveillance and monitoring through stabilizing the reactive mineral wastes released from metal industries. This paper applied a simple and an inexpensive hydration process as a pre-treatment step for the carbonation of Ladle Furnace (LF) slag, one of the steel production by-products in UAE, followed by direct gas-solid carbonation in a new designed integrated fluidized bed reactor (FBR). About (10–15)% by weight of produced steel, alkaline solid residues were generated, based on the characteristics of the manufacturing process. The integrated FBR was designed to control the flow rate up to 50 l/min with step accuracy of 0.1 l/min, and temperature up to 200 °C through a double jacket electrical heater. Operating pressure can be adjusted up to 6 bars. All parameters are monitored by SCADA system. A mixture gas of 10% CO2, balanced with air, was used to perform the carbonation process and evaluation the carbonation efficiency as well. A gas analyzer installed at the outlet of FBR was used to measure unreacted CO2 gas after leaving the reactor, and calculate the amount of CO2 captured accordingly. Results of analytical techniques like TGA and XRD emphasized the sequestration of CO2 and show a high efficient carbonation process

    The detection of the imprint of filaments on cosmic microwave background lensing

    Full text link
    Galaxy redshift surveys, such as 2dF, SDSS, 6df, GAMA and VIPERS, have shown that the spatial distribution of matter forms a rich web, known as the cosmic web. The majority of galaxy survey analyses measure the amplitude of galaxy clustering as a function of scale, ignoring information beyond a small number of summary statistics. Since the matter density field becomes highly non-Gaussian as structure evolves under gravity, we expect other statistical descriptions of the field to provide us with additional information. One way to study the non-Gaussianity is to study filaments, which evolve non-linearly from the initial density fluctuations produced in the primordial Universe. In our study, we report the first detection of CMB (Cosmic Microwave Background) lensing by filaments and we apply a null test to confirm our detection. Furthermore, we propose a phenomenological model to interpret the detected signal and we measure how filaments trace the matter distribution on large scales through filament bias, which we measure to be around 1.5. Our study provides a new scope to understand the environmental dependence of galaxy formation. In the future, the joint analysis of lensing and Sunyaev-Zel'dovich observations might reveal the properties of `missing baryons', the vast majority of the gas which resides in the intergalactic medium and has so far evaded most observations

    Discovery of a polyomavirus in European badgers (Meles meles) and the evolution of host range in the family Polyomaviridae.

    Get PDF
    Polyomaviruses infect a diverse range of mammalian and avian hosts, and are associated with a variety of symptoms. However, it is unknown whether the viruses are found in all mammalian families and the evolutionary history of the polyomaviruses is still unclear. Here, we report the discovery of a novel polyomavirus in the European badger (Meles meles), which to our knowledge represents the first polyomavirus to be characterized in the family Mustelidae, and within a European carnivoran. Although the virus was discovered serendipitously in the supernatant of a cell culture inoculated with badger material, we subsequently confirmed its presence in wild badgers. The European badger polyomavirus was tentatively named Meles meles polyomavirus 1 (MmelPyV1). The genome is 5187 bp long and encodes proteins typical of polyomaviruses. Phylogenetic analyses including all known polyomavirus genomes consistently group MmelPyV1 with California sea lion polyomavirus 1 across all regions of the genome. Further evolutionary analyses revealed phylogenetic discordance amongst polyomavirus genome regions, possibly arising from evolutionary rate heterogeneity, and a complex association between polyomavirus phylogeny and host taxonomic groups

    Large Scale Structure of the Universe

    Full text link
    Galaxies are not uniformly distributed in space. On large scales the Universe displays coherent structure, with galaxies residing in groups and clusters on scales of ~1-3 Mpc/h, which lie at the intersections of long filaments of galaxies that are >10 Mpc/h in length. Vast regions of relatively empty space, known as voids, contain very few galaxies and span the volume in between these structures. This observed large scale structure depends both on cosmological parameters and on the formation and evolution of galaxies. Using the two-point correlation function, one can trace the dependence of large scale structure on galaxy properties such as luminosity, color, stellar mass, and track its evolution with redshift. Comparison of the observed galaxy clustering signatures with dark matter simulations allows one to model and understand the clustering of galaxies and their formation and evolution within their parent dark matter halos. Clustering measurements can determine the parent dark matter halo mass of a given galaxy population, connect observed galaxy populations at different epochs, and constrain cosmological parameters and galaxy evolution models. This chapter describes the methods used to measure the two-point correlation function in both redshift and real space, presents the current results of how the clustering amplitude depends on various galaxy properties, and discusses quantitative measurements of the structures of voids and filaments. The interpretation of these results with current theoretical models is also presented.Comment: Invited contribution to be published in Vol. 8 of book "Planets, Stars, and Stellar Systems", Springer, series editor T. D. Oswalt, volume editor W. C. Keel, v2 includes additional references, updated to match published versio

    Local steroid injection for moderately severe idiopathic carpal tunnel syndrome: Protocol of a randomized double-blind placebo-controlled trial (NCT 00806871)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Patients with idiopathic carpal tunnel syndrome (CTS) are commonly treated with steroid injection into or proximal to the carpal tunnel. However, evidence for its efficacy beyond one month has not been established in randomized placebo-controlled trials. The primary aim of this randomized trial is to assess the efficacy of steroid injection into the carpal tunnel in relieving symptoms of CTS in patients with symptoms of such severity to warrant surgical treatment but have not been treated with steroid injection.</p> <p>Methods/Design</p> <p>The study is a randomized double-blind placebo-controlled trial. Patients referred to one orthopedic department because of CTS are screened. Eligibility criteria are age 18 to 70 years, clinical diagnosis of primary idiopathic CTS and abnormal nerve conduction tests or clinical diagnosis made independently by two orthopedic surgeons, failed treatment with wrist splinting, symptom severity of such magnitude that the patient is willing to undergo surgery, no severe sensory loss or thenar muscle atrophy, and no previous steroid injection for CTS. A total of 120 patients will be randomized to injection of 80 mg Methylprednisolone, 40 mg Methylprednisolone, or normal saline, each also containing 10 mg Lidocaine. Evaluation at baseline and at 5, 10, 24 and 52 weeks after injection includes validated questionnaires (CTS symptom severity scale, <it>Quick</it>DASH and SF-6D), adverse events, physical examination by a blinded assessor, and nerve conduction tests. The primary outcome measures are change in the CTS symptom severity score at 10 weeks and the rate of surgery at 52 weeks. The secondary outcome measures are the score change in the CTS symptom severity scale at 52 weeks, time to surgery, and change in <it>Quick</it>DASH and SF-6D scores and patient satisfaction at 10 and 52 weeks. The primary analysis will be carried out using mixed model analysis of repeated measures.</p> <p>Discussion</p> <p>This paper describes the rationale and design of a double-blind, randomized placebo-controlled trial that aims to determine the efficacy of two different doses of steroid injected into the carpal tunnel in patients with moderately severe idiopathic CTS.</p> <p>Trial registration</p> <p>Clinicaltrials.gov identifier NCT00806871</p

    A ‘quiet revolution’? The impact of Training Schools on initial teacher training partnerships

    Get PDF
    This paper discusses the impact on initial teacher training of a new policy initiative in England: the introduction of Training Schools. First, the Training School project is set in context by exploring the evolution of a partnership approach to initial teacher training in England. Ways in which Training Schools represent a break with established practice are considered together with their implications for the dominant mode of partnership led by higher education institutions (HEIs). The capacity of Training Schools to achieve their own policy objectives is examined, especially their efficacy as a strategy for managing innovation and the dissemination of innovation. The paper ends by focusing on a particular Training School project which has adopted an unusual approach to its work and enquires whether this alternative approach could offer a more profitable way forward. During the course of the paper, five different models of partnership are considered: collaborative, complementary, HEI-led, school-led and partnership within a partnership

    Next-Generation Sequencing Reveals Significant Bacterial Diversity of Botrytized Wine

    Get PDF
    While wine fermentation has long been known to involve complex microbial communities, the composition and role of bacteria other than a select set of lactic acid bacteria (LAB) has often been assumed either negligible or detrimental. This study served as a pilot study for using barcoded amplicon next-generation sequencing to profile bacterial community structure in wines and grape musts, comparing the taxonomic depth achieved by sequencing two different domains of prokaryotic 16S rDNA (V4 and V5). This study was designed to serve two goals: 1) to empirically determine the most taxonomically informative 16S rDNA target region for barcoded amplicon sequencing of wine, comparing V4 and V5 domains of bacterial 16S rDNA to terminal restriction fragment length polymorphism (TRFLP) of LAB communities; and 2) to explore the bacterial communities of wine fermentation to better understand the biodiversity of wine at a depth previously unattainable using other techniques. Analysis of amplicons from the V4 and V5 provided similar views of the bacterial communities of botrytized wine fermentations, revealing a broad diversity of low-abundance taxa not traditionally associated with wine, as well as atypical LAB communities initially detected by TRFLP. The V4 domain was determined as the more suitable read for wine ecology studies, as it provided greater taxonomic depth for profiling LAB communities. In addition, targeted enrichment was used to isolate two species of Alphaproteobacteria from a finished fermentation. Significant differences in diversity between inoculated and uninoculated samples suggest that Saccharomyces inoculation exerts selective pressure on bacterial diversity in these fermentations, most notably suppressing abundance of acetic acid bacteria. These results determine the bacterial diversity of botrytized wines to be far higher than previously realized, providing further insight into the fermentation dynamics of these wines, and demonstrate the utility of next-generation sequencing for wine ecology studies
    corecore