56 research outputs found

    Co-culture of Adult Mesenchymal Stem Cells and Nucleus Pulposus Cells in Bilaminar Pellets for Intervertebral Disc Regeneration

    Get PDF
    Background: Our goal is to optimize stem cell-based tissue engineering strategies in the context of the intervertebral disc environment. We explored the benefits of co-culturing nucleus pulposus cells (NPC) and adult mesenchymal stem cells (MSC) using a novel spherical bilaminar pellet culture system where one cell type is enclosed in a sphere of the other cell type. Our 3D system provides a structure that exploits embryonic processes such as tissue induction and condensation. We observed a unique phenomenon: the budding of co-culture pellets and the formation of satellite pellets that separate from the main pellet. Methods: MSC and NPC co-culture pellets were formed with three different structural organizations. The first had random organization. The other two had bilaminar organization with either MSC inside and NPC outside or NPC inside and MSC outside. Results: By 14 days, all co-culture pellets exhibited budding and spontaneously generated satellite pellets. The satellite pellets were composed of both cell types and, surprisingly, all had the same bilaminar organization with MSC on the inside and NPC on the outside. This organization was independent of the structure of the main pellet that the satellites stemmed from. Conclusion: The main pellets generated satellite pellets that spontaneously organized into a bilaminar structure. This implies that structural organization occurs naturally in this cell culture system and may be inherently favorable for cell-based tissue engineering strategies. The occurrence of budding and the organization of satellite pellets may have important implications for the use of co-culture pellets in cell-based therapies for disc regeneration. Clinical Relevance: From a therapeutic point of view, the generation of satellite pellets may be a beneficial feature that would serve to spread donor cells throughout the host matrix and restore normal matrix composition in a sustainable way, ultimately renewing tissue function. © 2009 The Spine Arthroplasy Society

    Domestic Water Demand During Droughts in Temperate Climates: Synthesising Evidence for an Integrated Framework

    Get PDF
    In the upcoming years, as the population is growing and ageing, as lifestyle changes create the need for more water and as fewer people live in each household, the UK water sector will have to deal with challenges in the provision of adequate water services. Unless critical action is taken, every area in the UK may face a supply-demand gap by the 2080s. Extreme weather events and variations that alter drought and flood frequency add to these pressures. However, little evidence is available about householders’ response to drought and there are few if any studies incorporating this evidence into models of demand forecasting. The present work lays the groundwork for modelling domestic water demand response under drought conditions in temperate climates. After discussing the current literature on estimating and forecasting domestic water consumption under both ‘normal’ and drought conditions, this paper identifies the limited ability of current domestic demand forecasting techniques to include the many different and evolving factors affecting domestic consumption and it stresses the need for the inclusion of inter and intra household factors as well as water use practices in future demand forecasting models

    GLI1 Confers Profound Phenotypic Changes upon LNCaP Prostate Cancer Cells That Include the Acquisition of a Hormone Independent State

    Get PDF
    The GLI (GLI1/GLI2) transcription factors have been implicated in the development and progression of prostate cancer although our understanding of how they actually contribute to the biology of these common tumours is limited. We observed that GLI reporter activity was higher in normal (PNT-2) and tumourigenic (DU145 and PC-3) androgen-independent cells compared to androgen-dependent LNCaP prostate cancer cells and, accordingly, GLI mRNA levels were also elevated. Ectopic expression of GLI1 or the constitutively active ΔNGLI2 mutant induced a distinct cobblestone-like morphology in LNCaP cells that, regarding the former, correlated with increased GLI2 as well as expression of the basal/stem-like markers CD44, β1-integrin, ΔNp63 and BMI1, and decreased expression of the luminal marker AR (androgen receptor). LNCaP-GLI1 cells were viable in the presence of the AR inhibitor bicalutamide and gene expression profiling revealed that the transcriptome of LNCaP-GLI1 cells was significantly closer to DU145 and PC-3 cells than to control LNCaP-pBP (empty vector) cells, as well as identifying LCN2/NGAL as a highly induced transcript which is associated with hormone independence in breast and prostate cancer. Functionally, LNCaP-GLI1 cells displayed greater clonal growth and were more invasive than control cells but they did not form colonies in soft agar or prostaspheres in suspension suggesting that they do not possess inherent stem cell properties. Moreover, targeted suppression of GLI1 or GLI2 with siRNA did not reverse the transformed phenotype of LNCaP-GLI1 cells nor did double GLI1/GLI2 knockdowns activate AR expression in DU145 or PC-3 cells. As such, early targeting of the GLI oncoproteins may hinder progression to a hormone independent state but a more detailed understanding of the mechanisms that maintain this phenotype is required to determine if their inhibition will enhance the efficacy of anti-hormonal therapy through the induction of a luminal phenotype and increased dependency upon AR function

    Exploiting notochord cells for stem cell-based regeneration of the intervertebral disc

    No full text
    The nucleus pulposus is an avascular and aneural tissue that has significant influence on the homeostasis and overall function of the intervertebral disc. The nucleus pulposus is comprised of a heterogeneous population of cells including large notochord cells and smaller chondrocyte-like cells. Loss of notochord cells has been correlated with the pathogenesis of disc degeneration and consequently, it has been hypothesized that regeneration of the disc could be mediated by notochord cells. Attempts to grow and expand notochord cells in vitro have thus far been limited by cell availability and ineffective culturing methodologies. As a result, co-culturing techniques have been developed in order to exploit notochord-derived signals for the differentiation of proliferative mesenchymal stem cells. A recent study by Korecki et al. has demonstrated that notochord cell conditioned medium has the ability to differentiate mesenchymal stem cells toward a nucleus pulposus-like fate, producing high levels of glycosaminoglycans and type III collagen. These findings suggest that growth factors and other soluble proteins may be able to stimulate endogenous IVD tissue maintenance in vivo. While this study advances our understanding of intervertebral disc cell-cell interactions, limitations remain in our ability to determine the phenotype of terminally differentiated cells within the nucleus pulposus (ie mature notochord cells) and therefore assess the relevance of differentiated mesenchymal stem cells for disc regeneration. In order for the field to progress, elucidation of the notochord phenotype remains of utmost importance

    Enhanced FGF23 Serum Concentrations and Phosphaturia in Gene Targeted Mice Expressing WNK-Resistant Spak

    Get PDF
    Contains fulltext : 107752.pdf (publisher's version ) (Open Access)Background: The WNK-dependent STE20/SPS1-related proline/alanine-rich kinase (SPAK) regulates the renal thiazide sensitive NaCl cotransporter (NCC) and the renal furosemide sensitive Na(+),K(+),2Cl(-) cotransporter (NKCC2) and thus participates in the regulation of renal salt excretion, extracellular fluid volume and blood pressure. Inhibition of NCC leads to anticalciuria. Moreover, NCC is also expressed in osteoblasts where it is implicated in the regulation of bone mineralization. Osteoblasts further influence mineral metabolism by releasing the phosphaturic hormone FGF23. The present study explored, whether SPAK participates in the regulation of calcium-phosphate homeostasis. Methods: FGF23 serum levels and phosphate homeostasis were analyzed in gene targeted mice expressing SPAK resistant to WNK-dependent activation (spak(tg/tg)) and in mice expressing wild type SPAK (spak(wt/wt)). Results: Serum FGF23 level was significantly higher, urinary phosphate excretion significantly larger and serum phosphate concentration significantly lower in spak(tg/tg) mice than in spak(wt/wt) mice. Urinary calcium excretion was significantly decreased in spaktg/tg mice. Serum levels of calcitriol and PTH were not significantly different between the genotypes. Bone density was significantly increased in spak(tg/tg) mice compared to spak(wt/wt) mice. Treatment of spak(wt/wt) mice with HCT increased FGF23 serum levels, and led to phosphaturia and hypophosphatemia. Conclusions: SPAK is a strong regulator of FGF23 formation, bone mineralization and renal Ca(2+) and phosphate excretion
    • …
    corecore