116 research outputs found

    NΓ©olithisation et nΓ©olithique ancien au Maroc

    Get PDF

    Paradigm shift in MRI for sciatica

    Get PDF
    In contrast with the intuitive feeling of physicians many worrisome MRI findings do not correlate with patient outcome in patients with sciatica. Physicians should for example not automatically ascribe persistent or recurrent symptoms of sciatica to the presence of abnormalities visible on MRI. This thesis enables physicians to reshape the mindset of many persons thinking that knowing imaging findings can only be good. Seeing MRI abnormalities of patients with sciatica should not always be believing.For this study funding was received from the Health Care Efficiency Research Program of Netherlands Organisation for Health Research and Development (ZonMw) and the Hoelen Foundation, The Hague.UBL - phd migration 201

    Electron-Deficient N-Alkyloyl Derivatives of Thienopyrrole-4,6-dione Yield Efficient Polymer Solar Cells with Open-Circuit Voltages > 1 V

    Get PDF
    Poly(benzo[1,2-b:4,5-bβ€²]dithiophene–thieno[3,4-c]pyrrole-4,6-dione) (PBDTTPD) polymer donors yield some of the highest open-circuit voltages (VOC, ca. 0.9 V) and fill factors (FF, ca. 70%) in conventional bulk-heterojunction (BHJ) solar cells with PCBM acceptors. Recent work has shown that the incorporation of ring substituents into the side chains of the BDT motifs in PBDTTPD can induce subtle variations in material properties, resulting in an increase of the BHJ device VOC to ∼1 V. In this contribution, we report on the synthesis of N-alkyloyl-substituted TPD motifs (TPD(CO)) and show that the electron-deficient motifs can further lower both the polymer LUMO and HOMO levels, yielding device VOC > 1 V (up to ca. 1.1 V) in BHJ solar cells with PCBM. Despite the high VOC achieved (i.e., low polymer HOMO), BHJ devices cast from TPD(CO)-based polymer donors can reach power conversion efficiencies (PCEs) of up to 6.7%, making these promising systems for use in the high-band-gap cell of tandem solar cells

    Dependence of Crystallite Formation and Preferential Backbone Orientations on the Side Chain Pattern in PBDTTPD Polymers

    Get PDF
    Alkyl substituents appended to the Ο€-conjugated main chain account for the solution-processability and film-forming properties of most Ο€-conjugated polymers for organic electronic device applications, including field-effect transistors (FETs) and bulk-heterojunction (BHJ) solar cells. Beyond film-forming properties, recent work has emphasized the determining role that side-chain substituents play on polymer self-assembly and thin-film nanostructural order, and, in turn, on device performance. However, the factors that determine polymer crystallite orientation in thin-films, implying preferential backbone orientation relative to the device substrate, are a matter of some debate, and these structural changes remain difficult to anticipate. In this report, we show how systematic changes in the side-chain pattern of poly(benzo[1,2-b:4,5-bβ€²]dithiophene–alt–thieno[3,4-c]pyrrole-4,6-dione) (PBDTTPD) polymers can (i) influence the propensity of the polymer to order in the Ο€-stacking direction, and (ii) direct the preferential orientation of the polymer crystallites in thin films (e.g., β€œface-on” vs β€œedge-on”). Oriented crystallites, specifically crystallites that are well-ordered in the Ο€-stacking direction, are believed to be a key contributor to improved thin-film device performance in both FETs and BHJ solar cells

    Ring Substituents Mediate the Morphology of PBDTTPD-PCBM Bulk-Heterojunction Solar Cells

    Get PDF
    Among Ο€-conjugated polymer donors for efficient bulk-heterojunction (BHJ) solar cell applications, poly(benzo[1,2-b:4,5-bβ€²]dithiophene–thieno[3,4-c]pyrrole-4,6-dione) (PBDTTPD) polymers yield some of the highest open-circuit voltages (VOC, ca. 0.9 V) and fill-factors (FF, ca. 70%) in conventional (single-cell) BHJ devices with PCBM acceptors. In PBDTTPD, side chains of varying size and branching affect polymer self-assembly, nanostructural order, and impact material performance. However, the role of the polymer side-chain pattern in the intimate mixing between polymer donors and PCBM acceptors, and on the development of the BHJ morphology is in general less understood. In this contribution, we show that ring substituents such as furan (F), thiophene (T) and selenophene (S)β€”incorporated into the side chains of PBDTTPD polymersβ€”can induce significant and, of importance, very different morphological effects in BHJs with PCBM. A combination of experimental and theoretical (via density functional theory) characterizations sheds light on how varying the heteroatom of the ring substituents impacts (i) the preferred side-chain configurations and (ii) the ionization, electronic, and optical properties of the PBDTTPD polymers. In parallel, we find that the PBDT(X)TPD analogs (with X = F, T, or S) span a broad range of power conversion efficiencies (PCEs, 3–6.5%) in optimized devices with improved thin-film morphologies via the use of 1,8-diiodooctane (DIO), and discuss that persistent morphological impediments at the nanoscale can be at the origin of the spread in PCE across optimized PBDT(X)TPD-based devices. With their high VOC ∼1 V, PBDT(X)TPD polymers are promising candidates for use in the high-band gap cell of tandem solar cells

    Improving the long-term stability of PBDTTPD polymer solar cells through material purification aimed at removing organic impurities

    Get PDF
    While bulk heterojunction (BHJ) solar cells fabricated from high Mn PBDTTPD achieve power conversion efficiencies (PCE) as high as 7.3%, the short-circuit current density (JSC) of these devices can drop by 20% after seven days of storage in the dark and under inert conditions. This degradation is characterized by the appearance of S-shape features in the reverse bias region of current–voltage (J–V) curves that increase in amplitude over time. Conversely, BHJ solar cells fabricated from low Mn PBDTTPD do not develop S-shaped J–V curves. However, S-shapes identical to those observed in high Mn PBDTTPD solar cells can be induced in low Mn devices through intentional contamination with the TPD monomer. Furthermore, when high Mn PBDTTPD is purified via size exclusion chromatography (SEC) to reduce the content of low molecular weight species, the JSC of polymer devices is significantly more stable over time. After 111 days of storage in the dark under inert conditions, the J–V curves do not develop S-shapes and the JSC degrades by only 6%. The S-shape degradation feature, symptomatic of low device lifetimes, appears to be linked to the presence of low molecular weight contaminants, which may be trapped within samples of high Mn polymer that have not been purified by SEC. Although these impurities do not affect initial device PCE, they significantly reduce device lifetime, and solar cell stability is improved by increasing the purity of the polymer materials

    Flexural Fatigue Behavior of Cross-Ply Laminates: An Experimental Approach

    Get PDF
    Within an experimental approach we describe the mechanical behavior of different resin-epoxy laminates reinforced with cross-ply Kevlar and glass fibers under the conditions of static and cyclic three-point bending. In static tests, we consider the effect of stacking sequence, the thickness of 90Β°-oriented layers, reinforcement type on the mechanical behavior of laminates under loading and on realization of various damage modes leading to rupture. Cyclic loading studies have been performed in two steps. In the first stage, we inquire into the dependence of the behavior and durability of four glass fiber- reinforced laminate-types on the stacking sequence; the second stage is devoted to studying the dependence of cyclic strength and fatigue behavior of laminates on the reinforcement type. Fatigue tests are carried out in load-control regime for glass and hybrid (Kevlar + glass) fiber laminates. Fatigue curves are constructed in coordinates β€œstress - number of cycles until fracture” from the criteria corresponding to a drop in stiffness by 5 and 10%. Analysis of the results obtained permits evaluation of the effect of the stacking sequence and the reinforcement type on the behavior of cross-ply laminates in cyclic loading. The presence of Kevlar fibers accounts for nonlinear behavior of laminates in static tests and for low cyclic strength in fatigue tests under three-point bending.Π’ Ρ€Π°ΠΌΠΊΠ°Ρ… ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΏΠΎΠ΄Ρ…ΠΎΠ΄Π° описано мСханичСскоС ΠΏΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… Π»Π°ΠΌΠΈΠ½Π°Ρ‚ΠΎΠ² с ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Π΅ΠΉ ΠΈΠ· эпоксидной смолы, пСрСкрСстно-Π°Ρ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… ΠΊΠ΅Π²Π»Π°Ρ€ΠΎΠ²Ρ‹ΠΌΠΈ Π²ΠΎΠ»ΠΎΠΊΠ½Π°ΠΌΠΈ ΠΈ стСкловолокнами, Π² условиях статичСского ΠΈ цикличСского Ρ‚Ρ€Π΅Ρ…Ρ‚ΠΎΡ‡Π΅Ρ‡Π½ΠΎΠ³ΠΎ ΠΈΠ·Π³ΠΈΠ±Π°. ΠŸΡ€ΠΈ статичСских испытаниях Ρ€Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°ΡŽΡ‚ΡΡ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ ΡƒΠΊΠ»Π°Π΄ΠΊΠΈ слоСв ΠΈ Π²ΠΎΠ»ΠΎΠΊΠΎΠ½, Ρ‚ΠΎΠ»Ρ‰ΠΈΠ½Ρ‹ слоСв, ΠΎΡ€ΠΈΠ΅Π½Ρ‚ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… ΠΏΠΎΠ΄ ΡƒΠ³Π»ΠΎΠΌ 90Β° ΠΈ влияниС Ρ‚ΠΈΠΏΠ° армирования Π½Π° мСханичСскоС ΠΏΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ Π»Π°ΠΌΠΈΠ½Π°Ρ‚ΠΎΠ² Π² процСссС нагруТСния, Π° Ρ‚Π°ΠΊΠΆΠ΅ Π½Π° Ρ€Π΅Π°Π»ΠΈΠ·Π°Ρ†ΠΈΡŽ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… Ρ€Π΅ΠΆΠΈΠΌΠΎΠ² поврСТдСния, приводящих ΠΊ Ρ€Π°Π·Ρ€ΡƒΡˆΠ΅Π½ΠΈΡŽ. ИсслСдования ΠΏΡ€ΠΈ цикличСском Π½Π°Π³Ρ€ΡƒΠΆΠ΅Π½ΠΈΠΈ состоят ΠΈΠ· Π΄Π²ΡƒΡ… этапов. На ΠΏΠ΅Ρ€Π²ΠΎΠΌ этапС изучаСтся влияниС ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ ΡƒΠΊΠ»Π°Π΄ΠΊΠΈ слоСв ΠΈ Π²ΠΎΠ»ΠΎΠΊΠΎΠ½ Π½Π° ΠΏΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ ΠΈ Π΄ΠΎΠ»Π³ΠΎΠ²Π΅Ρ‡Π½ΠΎΡΡ‚ΡŒ Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅Ρ… Ρ‚ΠΈΠΏΠΎΠ² Π»Π°ΠΌΠΈΠ½Π°Ρ‚ΠΎΠ², Π°Ρ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… стСкловолокнами, Π½Π° Π²Ρ‚ΠΎΡ€ΠΎΠΌ этапС - влияниС Ρ‚ΠΈΠΏΠ° армирования Π½Π° Ρ†ΠΈΠΊΠ»ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ ΠΏΡ€ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒ ΠΈ сопротивлСниС Π»Π°ΠΌΠΈΠ½Π°Ρ‚ΠΎΠ² ΠΏΡ€ΠΈ цикличСском Π½Π°Π³Ρ€ΡƒΠΆΠ΅Π½ΠΈΠΈ. УсталостныС испытания Π²Ρ‹ΠΏΠΎΠ»Π½Π΅Π½Ρ‹ Π² мягком Ρ€Π΅ΠΆΠΈΠΌΠ΅ нагруТСния для Π»Π°ΠΌΠΈΠ½Π°Ρ‚ΠΎΠ², Π°Ρ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… стСкловолокнами ΠΈ Π³ΠΈΠ±Ρ€ΠΈΠ΄Π½Ρ‹ΠΌΠΈ Π²ΠΎΠ»ΠΎΠΊΠ½Π°ΠΌΠΈ (ΠΊΠ΅Π²Π»Π°Ρ€+стСкло). ΠšΡ€ΠΈΠ²Ρ‹Π΅ усталости Π±Ρ‹Π»ΠΈ построСны Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°Ρ… напряТСниС - число Ρ†ΠΈΠΊΠ»ΠΎΠ² Π΄ΠΎ Ρ€Π°Π·Ρ€ΡƒΡˆΠ΅Π½ΠΈΡ Π½Π° основС ΠΊΡ€ΠΈΡ‚Π΅Ρ€ΠΈΠ΅Π² сниТСния ТСсткости Π½Π° 5 ΠΈ 10%. Анализ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ² позволяСт ΠΎΡ†Π΅Π½ΠΈΡ‚ΡŒ влияниС ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ ΡƒΠΊΠ»Π°Π΄ΠΊΠΈ слоСв ΠΈ Ρ‚ΠΈΠΏΠ° армирования Π½Π° ΠΏΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ пСрСкрСстно-Π°Ρ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… Π»Π°ΠΌΠΈΠ½Π°Ρ‚ΠΎΠ² ΠΏΡ€ΠΈ цикличСском Π½Π°Π³Ρ€ΡƒΠΆΠ΅Π½ΠΈΠΈ. НаличиС ΠΊΠ΅Π²Π»Π°Ρ€ΠΎΠ²Ρ‹Ρ… Π²ΠΎΠ»ΠΎΠΊΠΎΠ½ Π² Π»Π°ΠΌΠΈΠ½Π°Ρ‚Π°Ρ… обСспСчиваСт ΠΈΡ… Π½Π΅Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ ΠΏΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ ΠΏΡ€ΠΈ статичСских испытаниях ΠΈ Π½ΠΈΠ·ΠΊΡƒΡŽ Ρ†ΠΈΠΊΠ»ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ ΠΏΡ€ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ усталостных испытаниях Π² условиях Ρ‚Ρ€Π΅Ρ…Ρ‚ΠΎΡ‡Π΅Ρ‡Π½ΠΎΠ³ΠΎ ΠΈΠ·Π³ΠΈΠ±Π°.Π£ Ρ€Π°ΠΌΠΊΠ°Ρ… Π΅ΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΏΡ–Π΄Ρ…ΠΎΠ΄Ρƒ описано ΠΌΠ΅Ρ…Π°Π½Ρ–Ρ‡Π½Ρƒ ΠΏΠΎΠ²Π΅Π΄Ρ–Π½ΠΊΡƒ Ρ€Ρ–Π·Π½ΠΈΡ… Π»Π°ΠΌΡ–Π½Π°Ρ‚Ρ–Π² Ρ–Π· ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Π΅ΡŽ Π· Споксидної смоли, Ρ‰ΠΎ пСрСхрСсноармовані ΠΊΠ΅Π²Π»Π°Ρ€ΠΎ- Π²ΠΈΠΌΠΈ Π²ΠΎΠ»ΠΎΠΊΠ½Π°ΠΌΠΈ Ρ– скловолокнами, Π² ΡƒΠΌΠΎΠ²Π°Ρ… статичного Ρ– Ρ†ΠΈΠΊΠ»Ρ–Ρ‡Π½ΠΎΠ³ΠΎ Ρ‚Ρ€ΠΈ- Ρ‚ΠΎΡ‡ΠΊΠΎΠ²ΠΎΠ³ΠΎ Π·Π³ΠΈΠ½Ρƒ. ΠŸΡ€ΠΈ статичних випробуваннях Ρ€ΠΎΠ·Π³Π»ΡΠ΄Π°ΡŽΡ‚ΡŒΡΡ ΠΏΠΎΡΠ»Ρ–Π΄ΠΎΠ²Π½Ρ–ΡΡ‚ΡŒ укладСння ΡˆΠ°Ρ€Ρ–Π² Ρ– Π²ΠΎΠ»ΠΎΠΊΠΎΠ½, Ρ‚ΠΎΠ²Ρ‰ΠΈΠ½ΠΈ ΠΎΡ€Ρ–Ρ”Π½Ρ‚ΠΎΠ²Π°Π½ΠΈΡ… ΠΏΡ–Π΄ ΠΊΡƒΡ‚ΠΎΠΌ 90Β° ΡˆΠ°Ρ€Ρ–Π² Ρ– Π²ΠΏΠ»ΠΈΠ² Ρ‚ΠΈΠΏΡƒ армування Π½Π° ΠΌΠ΅Ρ…Π°Π½Ρ–Ρ‡Π½Ρƒ ΠΏΠΎΠ²Π΅Π΄Ρ–Π½ΠΊΡƒ Π»Π°ΠΌΡ–Π½Π°Ρ‚Ρ–Π² Ρƒ процСсі навантаТСння, Π° Ρ‚Π°ΠΊΠΎΠΆ Π½Π° Ρ€Π΅Π°Π»Ρ–Π·Π°Ρ†Ρ–ΡŽ Ρ€Ρ–Π·Π½ΠΈΡ… Ρ€Π΅ΠΆΠΈΠΌΡ–Π² пошкодТСння, Ρ‰ΠΎ ΠΏΡ€ΠΈΠ·Π²ΠΎΠ΄ΠΈΡ‚ΡŒ Π΄ΠΎ руйнування. ДослідТСння ΠΏΡ€ΠΈ Ρ†ΠΈΠΊΠ»Ρ–Ρ‡Π½ΠΎΠΌΡƒ Π½Π°Π²Π°Π½Ρ‚Π°ΠΆΠ΅Π½Π½Ρ– ΡΠΊΠ»Π°Π΄Π°Ρ”Ρ‚ΡŒΡΡ Π· Π΄Π²ΠΎΡ… Π΅Ρ‚Π°ΠΏΡ–Π². На ΠΏΠ΅Ρ€ΡˆΠΎΠΌΡƒ Π΅Ρ‚Π°ΠΏΡ– Ρ€ΠΎΠ·Π³Π»ΡΠ΄Π°Ρ”Ρ‚ΡŒΡΡ Π²ΠΏΠ»ΠΈΠ² послідовності укладСння ΡˆΠ°Ρ€Ρ–Π² Ρ– Π²ΠΎΠ»ΠΎΠΊΠΎΠ½ Π½Π° ΠΏΠΎΠ²Π΅Π΄Ρ–Π½ΠΊΡƒ Ρ– Π΄ΠΎΠ²Π³ΠΎΠ²Ρ–Ρ‡Π½Ρ–ΡΡ‚ΡŒ Ρ‡ΠΎΡ‚ΠΈΡ€ΡŒΠΎΡ… Ρ‚ΠΈΠΏΡ–Π² Π°Ρ€ΠΌΠΎΠ²Π°Π½ΠΈΡ… скловолокнами Π»Π°ΠΌΡ–Π½Π°Ρ‚Ρ–Π², Π½Π° Π΄Ρ€ΡƒΠ³ΠΎΠΌΡƒ Π΅Ρ‚Π°ΠΏΡ– - Π²ΠΏΠ»ΠΈΠ² Ρ‚ΠΈΠΏΡƒ армування Π½Π° Ρ†ΠΈΠΊΠ»Ρ–Ρ‡Π½Ρƒ ΠΌΡ–Ρ†Π½Ρ–ΡΡ‚ΡŒ Ρ– ΠΎΠΏΡ–Ρ€ Π»Π°ΠΌΡ–Π½Π°Ρ‚Ρ–Π² ΠΏΡ€ΠΈ Ρ†ΠΈΠΊΠ»Ρ–Ρ‡Π½ΠΎΠΌΡƒ Π½Π°Π²Π°Π½Ρ‚Π°ΠΆΠ΅Π½Π½Ρ–. Випробування Π½Π° Π²Ρ‚ΠΎΠΌΡƒ Π²ΠΈΠΊΠΎΠ½Π°Π½ΠΎ Ρƒ ΠΌ ’якому Ρ€Π΅ΠΆΠΈΠΌΡ– навантаТСння для Π°Ρ€ΠΌΠΎΠ²Π°Π½ΠΈΡ… скловолокнами Ρ– Π³Ρ–Π±Ρ€ΠΈΠ΄Π½ΠΈΠΌΠΈ Π²ΠΎΠ»ΠΎΠΊΠ½Π°ΠΌΠΈ (ΠΊΠ΅Π²Π»Π°Ρ€ + скло) Π»Π°ΠΌΡ–Π½Π°Ρ‚Ρ–Π². На основі ΠΊΡ€ΠΈΡ‚Π΅Ρ€Ρ–Ρ—Π² зниТСння Торсткості Π½Π° 5 Ρ– 10% Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°Ρ… напруТСння - число Ρ†ΠΈΠΊΠ»Ρ–Π² Π΄ΠΎ руйнування ΠΏΠΎΠ±ΡƒΠ΄ΠΎΠ²Π°Π½ΠΎ ΠΊΡ€ΠΈΠ²Ρ– ΡƒΡ‚ΠΎΠΌΠΈ. Аналіз ΠΎΡ‚Ρ€ΠΈΠΌΠ°Π½ΠΈΡ… Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ–Π² дозволяє ΠΎΡ†Ρ–Π½ΠΈΡ‚ΠΈ Π²ΠΏΠ»ΠΈΠ² послідовності укладСння ΡˆΠ°Ρ€Ρ–Π² Ρ– Ρ‚ΠΈΠΏΡƒ армування Π½Π° ΠΏΠΎΠ²Π΅Π΄Ρ–Π½ΠΊΡƒ пСрСхрСсноармованих Π»Π°ΠΌΡ–Π½Π°Ρ‚Ρ–Π² ΠΏΡ€ΠΈ Ρ†ΠΈΠΊΠ»Ρ–Ρ‡Π½ΠΎΠΌΡƒ Π½Π°Π²Π°Π½Ρ‚Π°ΠΆΠ΅Π½Π½Ρ–. ΠΠ°ΡΠ²Π½Ρ–ΡΡ‚ΡŒ ΠΊΠ΅Π²Π»Π°Ρ€ΠΎΠ²ΠΈΡ… Π²ΠΎΠ»ΠΎΠΊΠΎΠ½ Ρƒ Π»Π°ΠΌΡ–Π½Π°Ρ‚Π°Ρ… Π·Π°ΠΏΠ΅Π·Ρ‡ΡƒΡ” Ρ—Ρ… Π½Π΅Π»Ρ–Π½Ρ–ΠΉΠ½Ρƒ ΠΏΠΎΠ²Π΅Π΄Ρ–Π½ΠΊΡƒ ΠΏΡ€ΠΈ статичних випробуваннях Ρ– Π½ΠΈΠ·ΡŒΠΊΡƒ Ρ†ΠΈΠΊΠ»Ρ–Ρ‡Π½Ρƒ ΠΌΡ–Ρ†Π½Ρ–ΡΡ‚ΡŒ ΠΏΡ€ΠΈ випробуваннях Π½Π° Π²Ρ‚ΠΎΠΌΡƒ Π² ΡƒΠΌΠΎΠ²Π°Ρ… Ρ‚Ρ€ΠΈΡ‚ΠΎΡ‡ΠΊΠΎΠ²ΠΎΠ³ΠΎ Π·Π³ΠΈΠ½Ρƒ
    • …
    corecore