11 research outputs found

    Polarons with a twist

    Full text link
    We consider a polaron model where molecular \emph{rotations} are important. Here, the usual hopping between neighboring sites is affected directly by the electron-phonon interaction via a {\em twist-dependent} hopping amplitude. This model may be of relevance for electronic transport in complex molecules and polymers with torsional degrees of freedom, such as DNA, as well as in molecular electronics experiments where molecular twist motion is significant. We use a tight-binding representation and find that very different polaronic properties are already exhibited by a two-site model -- these are due to the nonlinearity of the restoring force of the twist excitations, and of the electron-phonon interaction in the model. In the adiabatic regime, where electrons move in a {\em low}-frequency field of twisting-phonons, the effective splitting of the energy levels increases with coupling strength. The bandwidth in a long chain shows a power-law suppression with coupling, unlike the typical exponential dependence due to linear phonons.Comment: revtex4 source and one eps figur

    W=0 Pairing in (N,N)(N,N) Carbon Nanotubes away from Half Filling

    Full text link
    We use the Hubbard Hamiltonian HH on the honeycomb lattice to represent the valence bands of carbon single-wall (N,N)(N,N) nanotubes. A detailed symmetry analysis shows that the model allows W=0 pairs which we define as two-body singlet eigenstates of HH with vanishing on-site repulsion. By means of a non-perturbative canonical transformation we calculate the effective interaction between the electrons of a W=0 pair added to the interacting ground state. We show that the dressed W=0 pair is a bound state for resonable parameter values away from half filling. Exact diagonalization results for the (1,1) nanotube confirm the expectations. For (N,N)(N,N) nanotubes of length ll, the binding energy of the pair depends strongly on the filling and decreases towards a small but nonzero value as ll \to \infty. We observe the existence of an optimal doping when the number of electrons per C atom is in the range 1.2÷\div1.3, and the binding energy is of the order of 0.1 ÷\div 1 meV.Comment: 16 pages, 6 figure

    Electronic transport properties of helical macromolecular chains using dihedral orbital model

    No full text
    National Science Foundation of China [10704062]By applying the non-equilibrium Green's function method, in combination with the dihedral orbital model, we have theoretically investigated quantum transport properties of organic molecular chains, focusing on the effects of the helical rotation of the chains. The transmission coefficient, the electronic current, as well as the current shot noise were calculated. It was found that the helical rotation modifies the transport properties profoundly. It leads to a diminishing and roughly periodical oscillatory behaviour of both the current and shot noise power

    Backbone-induced semiconducting behavior in short DNA wires

    No full text
    We propose a model Hamiltonian for describing charge transport through short homogeneous double stranded DNA molecules. We show that the hybridization of the overlapping π\pi, orbitals in the base-pair stack coupled to the backbone is sufficient to predict the existence of a gap in the nonequilibrium current-voltage characteristics with a minimal number of parameters. Our results are in a good agreement with the recent finding of semiconducting behavior in short poly(G)-poly(C) DNA oligomers. In particular, our model provides a correct description of the molecular resonances which determine the quasi-linear part of the current out of the gap region

    1 Tight-Binding Modeling of Charge Migration in DNA Devices

    No full text
    Within the class of biopolymers, DNA is expected to play an outstanding role in molecular electronics [1]. This is mainly due to its unique self-assembling and self-recognition properties which are essential for its performance as carrier of the genetic code. It is the long-standing hope of many scientists tha
    corecore