28 research outputs found

    Structure of rabbit liver fructose 1,6-bisphosphatase at 2.3 Ã… resolution

    Get PDF
    The three-dimensional structure of the R form of rabbit liver fructose 1,6-bisphosphatase (Fru-1,6-Pase; E.C. 3.1.3.11) has been determined by a combination of heavy-atom and molecular-replacement methods. A model, which includes 2394 protein atoms and 86 water molecules, has been refined at 2.3 Ã… resolution to a crystallographic R factor of 0.177. The root-mean-square deviations of bond distances and angles from standard geometry are 0.012 Ã… and 1.7°, respectively. This structural result, in conjunction with recently redetermined amino-acid sequence data, unequivocally establishes that the rabbit liver enzyme is not an aberrant bisphosphatase as once believed, but is indeed homologous to other Fru-1,6-Pases. The root-mean-square deviation of the C atoms in the rabbit liver structure from the homologous atoms in the pig kidney structure complexed with the product, fructose 6-phosphate, is 0.7 Ã…. Fru-1,6-Pases are homotetramers, and the rabbit liver protein crystallizes in space group I222 with one monomer in the asymmetric unit. The structure contains a single endogenous Mg<sup>2+</sup> ion coordinated by Glu97, Asp118, Asp121 and Glu280 at the site designated metal site 1 in pig kidney Fru-1,6-Pase R-form complexes. In addition, two sulfate ions, which are found at the positions normally occupied by the 6-phosphate group of the substrate, as well as the phosphate of the allosteric inhibitor AMP appear to provide stability. Met177, which has hydrophobic contacts with the adenine moiety of AMP in pig kidney T-form complexes, is replaced by glycine. Binding of a non-hydrolyzable substrate analog,<sup> β</sup>-methyl-fructose 1,6-bisphosphate, at the catalytic site is also examined

    Structure of myelin P2 protein from equine spinal cord

    Get PDF
    Equine P2 protein has been isolated from horse spinal cord and its structure determined to 2.1 Å. Since equine myelin is a viable alternative to bovine tissue for large-scale preparations, characterization of the proteins from equine spinal cord myelin has been initiated. There is an unusually high amount of P2 protein in equine CNS myelin compared with other species. The structure was determined by molecular replacement and subsequently refined to an R value of 0.187 (<sub>free</sub> = 0.233). The structure contains a molecule of the detergent LDAO and HEPES buffer in the binding cavity and is otherwise analogous to other cellular retinol-binding proteins

    Structure of protease-cleaved escherichia coliα-2-macroglobulin reveals a putative mechanism of conformational activation for protease entrapment

    Get PDF
    Bacterial -2-macroglobulins have been suggested to function in defence as broad-spectrum inhibitors of host proteases that breach the outer membrane. Here, the X-ray structure of protease-cleaved Escherichia coli -2-macroglobulin is described, which reveals a putative mechanism of activation and conformational change essential for protease inhibition. In this competitive mechanism, protease cleavage of the bait-region domain results in the untethering of an intrinsically disordered region of this domain which disrupts native interdomain interactions that maintain E. coli -2-macroglobulin in the inactivated form. The resulting global conformational change results in entrapment of the protease and activation of the thioester bond that covalently links to the attacking protease. Owing to the similarity in structure and domain architecture of Escherichia coli -2-macroglobulin and human -2-macro­globulin, this protease-activation mechanism is likely to operate across the diverse members of this group

    Structures and functions of carotenoids bound to reaction centers from purple photosynthetic bacteria

    Get PDF
    The photoprotective function of 15,15'-cis-carotenoids bound to the photosynthetic reaction centers (RCs) of purple bacteria has been studied using carotenoids reconstituted into carotenoidless RCs from Rhodobacter sphaeroides strain R26.1. The triplet-energy level of the carotenoid has been proposed to affect the quenching of the triplet state of special-pair bacteriochlorophyll (P). This was investigated using microsecond flash photolysis to detect the carotenoid triplets as a function of the number of conjugated double bonds, n. The carotenoid triplet signals were extracted by using singular-value decomposition (SVD) of the huge matrices data, and were confirmed for those having n = 8 to 11. This interpretation assumes that the reconstituted carotenoids occupy the same binding site in the RC. We have been able to confirm this assumption using X-ray crystallography to determine the structures of carotenoidless, wild-type carotenoid-containing, and 3,4-dihydro-spheroidene-reconstituted RCs. The X-ray study also emphasized the importance of the methoxy group of the carotenoids for binding to the RCs. Electroabsorption (Stark) spectroscopy was used to investigate the effect of the carotenoid on the electrostatic field around P. This electrostatic field changed by 10 % in the presence of the carotenoid

    Cryo-EM structures of light-harvesting 2 complexes from Rhodopseudomonas palustris reveal the molecular origin of absorption tuning

    Get PDF
    The genomes of some purple photosynthetic bacteria contain a multigene puc family encoding a series of α- and β-polypeptides that together form a heterogeneous antenna of light-harvesting 2 (LH2) complexes. To unravel this complexity, we generated four sets of puc deletion mutants in Rhodopseudomonas palustris, each encoding a single type of pucBA gene pair and enabling the purification of complexes designated as PucA-LH2, PucB-LH2, PucD-LH2, and PucE-LH2. The structures of all four purified LH2 complexes were determined by cryogenic electron microscopy (cryo-EM) at resolutions ranging from 2.7 to 3.6 Å. Uniquely, each of these complexes contains a hitherto unknown polypeptide, γ, that forms an extended undulating ribbon that lies in the plane of the membrane and that encloses six of the nine LH2 αβ-subunits. The γ-subunit, which is located near to the cytoplasmic side of the complex, breaks the C9 symmetry of the LH2 complex and binds six extra bacteriochlorophylls (BChls) that enhance the 800-nm absorption of each complex. The structures show that all four complexes have two complete rings of BChls, conferring absorption bands centered at 800 and 850 nm on the PucA-LH2, PucB-LH2, and PucE-LH2 complexes, but, unusually, the PucD-LH2 antenna has only a single strong near-infared (NIR) absorption peak at 803 nm. Comparison of the cryo-EM structures of these LH2 complexes reveals altered patterns of hydrogen bonds between LH2 αβ-side chains and the bacteriochlorin rings, further emphasizing the major role that H bonds play in spectral tuning of bacterial antenna complexes

    (1R,4S,5R)-3-fluoro-1,4,5-trihydroxy-2-cyclohexene-1-carboxylic acid: the fluoro analogue of the enolate intermediate in the reaction catalyzed by type II dehydroquinases

    No full text
    The fluoro analogue of the enolate intermediate in the reaction catalyzed by type II dehydroquinases has been prepared from naturally occurring (-)-quinic acid over seven steps and has been shown to be the most potent inhibitor reported to date of the type II enzyme from Mycobacterium tuberculosis

    Bovine mitochondrial peroxiredoxin III forms a two-ring catenane

    Get PDF
    SummaryA crystal structure is reported for the C168S mutant of a typical 2-Cys peroxiredoxin III (Prx III) from bovine mitochondria at a resolution of 3.3 Å. Prx III is present as a two-ring catenane comprising two interlocking dodecameric toroids that are assembled from basic dimeric units. Each ring has an external diameter of 150 Å and encompasses a central cavity that is 70 Å in width. The concatenated dodecamers are inclined at an angle of 55°, which provides a large contact surface between the rings. Dimer-dimer contacts involved in toroid formation are hydrophobic in nature, whereas the 12 areas of contact between interlocked rings arise from polar interactions. These two major modes of subunit interaction provide important insights into possible mechanisms of catenane formation

    The crystal structure of the lipid II-degrading bacteriocin syringacin M suggests unexpected evolutionary relationships between colicin M-like bacteriocins

    No full text
    Colicin-like bacteriocins show potential as next generation antibiotics with clinical and agricultural applications. Key to these potential applications is their high potency and species specificity that enables a single pathogenic species to be targeted with minimal disturbance of the wider microbial community. Here we present the structure and function of the colicin M-like bacteriocin, syringacin M from Pseudomonas syringae pv. tomato DC3000. Syringacin M kills susceptible cells through a highly specific phosphatase activity that targets lipid II, ultimately inhibiting peptidoglycan synthesis. Comparison of the structures of syringacin M and colicin M reveal that in addition to the expected similarity between the homologous C-terminal catalytic domains, the receptor binding domains of these proteins, which share no discernible sequence homology, share a striking structural similarity. This indicates that the generation of the novel receptor binding and species specificities of these bacteriocins has been driven by diversifying selection rather than diversifying recombination as previously suggested. Additionally, the structure of syringacin M reveals the presence of an active site calcium ion that is coordinated by a conserved aspartic acid side chain and is essential for catalytic activity. We show that mutation of this residue to alanine inactivates syringacin M and that the metal ion is absent from the structure of the mutant protein. Consistent with the presence of Ca2+ in the active site, we show that syringacin M activity is supported by Ca2+, along with Mg2+ and Mn2+ and the protein is catalytically inactive in the absence of these ions

    High-throughput screens for postgenomics: Studies of protein crystallization using microsystems technology

    No full text
    This paper describes the fabrication of a micromachined miniaturized array of chambers in a 2-mm-thick single crystal 100 silicon substrate for the combinatorial screening of the conditions required for protein crystallization screening (including both temperature and the concentration of crystallization agent). The device was fabricated using standard photolithography techniques, reactive ion etching (RIE) and anisotropic silicon wet etching to produce an array of 10 × 10 microchambers, with each element having a volume of 5 μL. A custom-built temperature controller was used to drive two peltier elements in order to maintain a temperature gradient (between 12 and 40 °C) across the device. The performance of the microsystem was illustrated by studying the crystallization of a model protein, hen egg white lysozyme. The crystals obtained were studied using X-ray diffraction at room temperature and exhibited 1.78 Å resolution. The problems of delivering a robust crystallization protocol, including issues of device fabrication, delivery of a reproducible temperature gradient, and overcoming evaporation are described

    Rings, ellipses and horseshoes: how purple bacteria harvest solar energy

    No full text
    This Review summarises the current state of research on the structure and function of light-harvesting apparatus in purple photosynthetic bacteria. Particular emphasis is placed on the major open questions still outstanding in this field in addition to what is already known
    corecore