6 research outputs found

    Langevin equation for the extended Rayleigh model with an asymmetric bath

    Full text link
    In this paper a one-dimensional model of two infinite gases separated by a movable heavy piston is considered. The non-linear Langevin equation for the motion of the piston is derived from first principles for the case when the thermodynamic parameters and/or the molecular masses of gas particles on left and right sides of the piston are different. Microscopic expressions involving time correlation functions of the force between bath particles and the piston are obtained for all parameters appearing in the non-linear Langevin equation. It is demonstrated that the equation has stationary solutions corresponding to directional fluctuation-induced drift in the absence of systematic forces. In the case of ideal gases interacting with the piston via a quadratic repulsive potential, the model is exactly solvable and explicit expressions for the kinetic coefficients in the non-linear Langevin equation are derived. The transient solution of the non-linear Langevin equation is analyzed perturbatively and it is demonstrated that previously obtained results for systems with the hard-wall interaction are recovered.Comment: 10 pages. To appear in Phys. Rev.

    Thermophoresis as persistent random walk

    Full text link
    In a simple model of a continuous random walk a particle moves in one dimension with the velocity fluctuating between V and -V. If V is associated with the thermal velocity of a Brownian particle and allowed to be position dependent, the model accounts readily for the particle's drift along the temperature gradient and recovers basic results of the conventional thermophoresis theory.Comment: 4 page
    corecore