190 research outputs found

    Impurity band in clean superconducting weak links

    Full text link
    Weak impurity scattering produces a narrow band with a finite density of states near the phase difference ϕ=π\phi =\pi in the mid-gap energy spectrum of a macroscopic superconducting weak link. The equivalent distribution of transmission coefficients of various cunducting quantum channels is found.Comment: 4 pages, 4 figures, changed conten

    Personality profile and biofeedback quality in the loop of paced breathing and HRV

    Get PDF
    Студентська наукова конференція «The student researcher in the modern psychological space», Харківський національний університет імені В. Н. Каразіна, факультет психології, 2 грудня 2011 р

    Quantum Force in Superconductor

    Full text link
    Transitions between states with continuous (called as classical state) and discrete (called as quantum state) spectrum of permitted momentum values is considered. The persistent current can exist along the ring circumference in the quantum state in contrast to the classical state. Therefore the average momentum can changes at the considered transitions. In order to describe the reiterated switching into and out the quantum state an additional term is introduced in the classical Boltzmann transport equation. The force inducing the momentum change at the appearance of the persistent current is called as quantum force. It is shown that dc potential difference is induced on ring segments by the reiterated switching if the dissipation force is not homogeneous along the ring circumference. The closing of the superconducting state in the ring is considered as real example of the transition from classical to quantum stateComment: 4 pages, RevTex, 0 figure

    A possibility of persistent voltage observation in a system of asymmetric superconducting rings

    Full text link
    A possibility to observe the persistent voltage in a superconducting ring of different widths of the arms is experimentally investigated. It was earlier found that switching of the arms between superconducting and normal states by ac current induces the dc voltage oscillation in magnetic field with a period corresponding to the flux quantum inside the ring. We use systems with a large number of asymmetric rings connected in series in order to investigate the possibility to observe this quantum phenomenon near the superconducting transition where thermal fluctuations switch ring segments without external influence and the persistent current is much smaller than in the superconducting state.Comment: 7 pages, 4 figure

    Singularities Motion Equations in 2-Dimensional Ideal Hydrodynamics of Incompressible Fluid

    Full text link
    In this paper, we have obtained motion equations for a wide class of one-dimensional singularities in 2-D ideal hydrodynamics. The simplest of them, are well known as point vortices. More complicated singularities correspond to vorticity point dipoles. It has been proved that point multipoles of a higher order (quadrupoles and more) are not the exact solutions of two-dimensional ideal hydrodynamics. The motion equations for a system of interacting point vortices and point dipoles have been obtained. It is shown that these equations are Hamiltonian ones and have three motion integrals in involution. It means the complete integrability of two-particle system, which has a point vortex and a point dipole.Comment: 9 page

    Magnetic field induced control of breather dynamics in a single plaquette of Josephson junctions

    Full text link
    We present a theoretical study of inhomogeneous dynamic (resistive) states in a single plaquette consisting of three Josephson junctions. Resonant interactions of such a breather state with electromagnetic oscillations manifest themselves by resonant current steps and voltage jumps in the current-voltage characteristics. An externally applied magnetic field leads to a variation of the relative shift between the Josephson current oscillations of two resistive junctions. By making use of the rotation wave approximation analysis and direct numerical simulations we show that this effect allows to effectively control the breather instabilities, e. g. to increase (decrease) the height of the resonant steps and to suppress the voltage jumps in the current-voltage characteristics.Comment: 4 pages, 3 figure

    Long-lived magnetoexcitons in 2D-fermion system

    No full text
    The paper addresses the experimental technique that, when applied to a 2D-electron system in the integer quantum Hall regime with filling factor ν = 2 (the Hall insulating state), allows resonant excitation of magnetoexcitons, their detection, control of an ensemble of long-lived triplet excitons and investigation of their radiationless decay related to exciton spin relaxation into the ground state. The technique proposed enables independent control of photoexcited electrons and Fermi-holes using photoinduced resonance reflection spectra as well as estimate with a reasonable degree of accuracy the resulting density of photoinduced electron-hole pairs bound into magnetoexcitons. The mere existence of triplet excitons was directly established by inelastic light scattering spectra which were analyzed to determine the value of singlet-triplet exciton splitting. It was found that the lifetimes of triplet excitons conditioned by electron spin relaxation in highly perfect GaAs/AlGaAs heterostructures with highly mobile 2D electrons are extremely long exceeding 100  μs at T < 1 K. The paper presents a qualitative explanation of the long-spin relaxation lifetimes which are unprecedented for translation-invariant 2D systems. This enabled us to create sufficiently high concentrations of triplet magnetoexcitons, electrically neutral excitations following Bose–Einstein statistics, in a Fermi electron system and investigate their collective properties. At sufficiently high densities of triplet magnetoexcitons and low temperatures, T < 1 K, the degenerate magnetofermionic system exhibits condensation of the triplet magnetoexcitons into a qualitatively new collective state with unusual properties which occurs in the space of generalized moments (magnetic translation vectors). The occurrence of a condensed phase is accompanied with a significant decrease in the viscosity of the photoexcited system, which is responsible for electron spin transport at macroscopic distances, as well as with the effects of threshold enhancement of the system response to the external action of the electromagnetic field and emergence of a new intensive radiative recombination channel

    Relaxation of high-energy quasiparticle distributions: electron-electron scattering in a two-dimensional electron gas

    Full text link
    A theory is developed for the evolution of the non-equilibrium distribution of quasiparticles when the scattering rate decreases due to particle collisions. We propose a "modified one-collision approximation" which is most effective for high-energy quasiparticle distributions. This method is used to explain novel measurements of the non-monotonic energy dependence of the signal of scattered electrons in a 2D system. The observed effect is related to a crossover from the ballistic to the hydrodynamic regime of electron flow.Comment: 6 pages, 3 figure

    Loss of Pi-Junction Behaviour in an Interacting Impurity Josephson Junction

    Full text link
    Using a generalization of the non-crossing approximation which incorporates Andreev reflection, we study the properties of an infinite-U Anderson impurity coupled to two superconducting leads. In the regime where Δ\Delta and TKT_K are comparable, we find that the position of the sub-gap resonance in the impurity spectral function develops a strong anomalous phase dependence-- its energy is a minimum when the phase difference between the superconductors is equal to π\pi. Calculating the Josephson current through the impurity, we find that π\pi-junction behaviour is lost as the position of the bound-state moves above the Fermi energy.Comment: 4 pages, 4 figures; labelling of Fig. 3 corrected; final published form, only trivial change

    Non-Equilibrium Quasiclassical Theory for Josephson Structures

    Full text link
    We present a non-equilibrium quasiclassical formalism suitable for studying linear response ac properties of Josephson junctions. The non-equilibrium self-consistency equations are satisfied, to very good accuracy, already in zeroth iteration. We use the formalism to study ac Josephson effect in a ballistic superconducting point contact. The real and imaginary parts of the ac linear conductance are calculated both analytically (at low frequencies) and numerically (at arbitrary frequency). They show strong temperature, frequency, and phase dependence. Many anomalous properties appear near phi = pi. We ascribe them to the presence of zero energy bound states.Comment: 11 pages, 9 figures, Final version to appear in PR
    corecore