7 research outputs found

    <i>Esperiopsis koltuni</i> sp. nov. (Demospongiae: Poecilosclerida: Esperiopsidae), a carnivorous sponge from deep water of the Sea of Okhotsk (North Pacific)

    No full text
    Esperiopsis koltuni, a new species of the sponge family Esperiopsidae, is described from deep water of the Sea of Okhotsk. The new species has a unique growth form: there is a basal plate with radiating cylindrical branches, whose oval flat distal parts bear filament-like outgrowths. Megascleres are arranged differently in the main part of branches and in their distal flat parts. The dermal membrane contains isochelae with protruding alae and abundant sigmancistras. Microscleres are represented by large anchorate spatuliferous isochelae, small isochelae, sigmas and sigmancistras. Esperiopsis koltuni sp. nov. is hermaphroditic, with parenchymella larva. The larval skeleton consists only of sigmas and sigmancistras. Esperiopsis koltuni sp. nov. can be easily distinguished from other Esperiopsis species by dimensions and combination of spicule types. In particular, it is the only species in the genus with three different size categories of styles. The new species lacks the aquiferous system, has a characteristic body plan with symmetrical lateral expansions, an unusual arrangement of microscleres in the dermal membrane and true sigmancistras. Moreover, prey capture by a filament-like outgrowth of the flat distal part was observed. All of these characteristics indicate that Esperiopsis koltuni sp. nov. is a carnivorous sponge

    Integrative taxonomic re-description of halisarca magellanica and description of a new species of Halisarca (Porifera, Demospongiae) from Chilean Patagonia

    No full text
    A series of recent expeditions in fjords and canals of Southern Chilean Patagonia allowed the re-collection of Halisarca magellanica Topsent, 1901 and the discovery of a new species, Halisarca desqueyrouxae sp. nov. The material studied was collected at depths ranging from 3 to 30 m at latitudes comprised between 42° and 49°S. Both species share the same habitat and show a morphological plasticity, but differ in their colour. Halisarca magellanica is bright pink to whitish with three morphs whereas H. desqueyrouxae sp. nov. is light brown to beige with two morphs. An extensive investigation in TEM and SEM reveals several differences among cell types with inclusions between both species. Three distinct spherulous cells occur. Type 1 is shared by both species, Type 2 is occasional in H. magellanica but absent from H. desqueyrouxae sp. nov. Type 3 is rare in H. magellanica and occurs abundantly in half of the specimens of H. desqueyrouxae sp. nov. Granular cells are shared by both species but do not occur in all specimens. Microgranular cells are characteristic of H. magellanica. Both species also clearly differ by their endobiotic bacteria. Phylogenetic analysis of cox1 sequences places H. magellanica as a sister group to all other previously published Halisarca species sequences (9.1-9.7% difference) except H. harmelini, while H. desqueyrouxae sp. nov. is placed as a sister group to H. dujardini (2.3% difference).SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Embryo development of Corticium candelabrum (Demospongiae: Homosclerophorida)

    No full text
    Corticium candelabrum is a homosclerophorid sponge widespread along the rocky Mediterranean sublittoral. Scanning and transmission electron microscopy were used to describe the gametes and larval development. The species is hermaphroditic. Oocytes and spermatocytes are clearly differentiated in April. Embryos develop from June to July when the larvae are released spontaneously. Spermatic cysts originate from choanocyte chambers and spermatogonia from choanocytes by choanocyte mitosis. Oocytes have a nucleolate nucleus and a cytoplasm filled with yolk granules and some lipids. Embryos are surrounded by firmly interlaced follicular cells from the parental tissue. A thin collagen layer lies below the follicular cells. The blastocoel is formed by migration of blastomeres to the morula periphery. Collagen is spread through the whole blastocoel in the embryo, but is organized in a dense layer (basal lamina) separating cells from the blastocoel in the larva. The larva is a typical cinctoblastula. The pseudostratified larval epithelium is formed by ciliated cells. The basal zone of the ciliated cells contains lipid inclusions and some yolk granules; the intermediate zone is occupied by the nucleus; and the apical zone contains abundant electron-lucent vesicles and gives rise to cilia with a single cross-striated rootlet. Numerous paracrystalline structures are contained in vacuoles within both apical and basal zones of the ciliated cells. Several slightly differentiated cell types are present in different parts of the larva. Most cells are ciliated, and show ultrastructural particularities depending on their location in the larvae (antero-lateral, intermediate, and posterior regions). A few smaller cells are non-ciliated. Several features of the C. candelabrum larva seem to support the previously proposed paraphyletic position of homoscleromorphs with respect to the other demosponges

    Embryo development of Corticium candelabrum (Demospongiae: Homosclerophorida)

    No full text
    Corticium candelabrum is a homosclerophorid sponge widespread along the rocky Mediterranean sublittoral. Scanning and transmission electron microscopy were used to describe the gametes and larval development. The species is hermaphroditic. Oocytes and spermatocytes are clearly differentiated in April. Embryos develop from June to July when the larvae are released spontaneously. Spermatic cysts originate from choanocyte chambers and spermatogonia from choanocytes by choanocyte mitosis. Oocytes have a nucleolate nucleus and a cytoplasm filled with yolk granules and some lipids. Embryos are surrounded by firmly interlaced follicular cells from the parental tissue. A thin collagen layer lies below the follicular cells. The blastocoel is formed by migration of blastomeres to the morula periphery. Collagen is spread through the whole blastocoel in the embryo, but is organized in a dense layer (basal lamina) separating cells from the blastocoel in the larva. The larva is a typical cinctoblastula. The pseudostratified larval epithelium is formed by ciliated cells. The basal zone of the ciliated cells contains lipid inclusions and some yolk granules; the intermediate zone is occupied by the nucleus; and the apical zone contains abundant electron-lucent vesicles and gives rise to cilia with a single cross-striated rootlet. Numerous paracrystalline structures are contained in vacuoles within both apical and basal zones of the ciliated cells. Several slightly differentiated cell types are present in different parts of the larva. Most cells are ciliated, and show ultrastructural particularities depending on their location in the larvae (antero-lateral, intermediate, and posterior regions). A few smaller cells are non-ciliated. Several features of the C. candelabrum larva seem to support the previously proposed paraphyletic position of homoscleromorphs with respect to the other demosponges

    The state of the art of biospeleology in Russia and other countries of the former Soviet Union: A review of the cave (endogean) invertebrate fauna. 3. References

    No full text

    Gastrulation in Cnidaria: The key to an understanding of phylogeny or the chaos of secondary modifications?

    No full text
    corecore