1,008 research outputs found
Computational modelling of compressible nonisothermal viscoelastic fluids
The prediction of compressible nonisothermal flows of viscoelastic fluids is important in many industrial processes. Until relatively recently, there was a lack of tractable thermodynamically consistent mathematical models for this class of flows. In this paper a stabilised finite element scheme is presented for the models developed by the authors Mackay and Phillips (2019) which incorporates compressibility and nonisothermal effects. Numerical results are presented for variants of a couple of benchmark problems: the lid driven cavity and the natural convection problems. The temporal discretisation is based on the Taylor–Galerkin method. A compressible version of the discrete elastic viscous split stress (DEVSS) formulation is used to stabilise the numerical scheme. The combined and separate influence of compressible, viscoelastic and thermal effects on the characteristics of these benchmark flows is studied for the first time
Relationship between dynamical heterogeneities and stretched exponential relaxation
We identify the dynamical heterogeneities as an essential prerequisite for
stretched exponential relaxation in dynamically frustrated systems. This
heterogeneity takes the form of ordered domains of finite but diverging
lifetime for particles in atomic or molecular systems, or spin states in
magnetic materials. At the onset of the dynamical heterogeneity, the
distribution of time intervals spent in such domains or traps becomes stretched
exponential at long time. We rigorously show that once this is the case, the
autocorrelation function of the renewal process formed by these time intervals
is also stretched exponential at long time.Comment: 8 pages, 4 figures, submitted to PR
Soft tissue response to mandibular advancement using 3D CBCT scanning
This prospective longitudinal study assessed the 3D soft tissue changes following mandibular advancement surgery. Cranial base registration was performed for superimposition of virtual models built from cone beam computed tomography (CBCT) volumes. Displacements at the soft and hard tissue chin (n=20), lower incisors and lower lip (n=21) were computed for presurgery to splint removal (4–6 week surgical outcome), presurgery to 1 year postsurgery (1-year surgical outcome), and splint removal to 1 year postsurgery (postsurgical adaptation). Qualitative evaluations of color maps illustrated the surgical changes and postsurgical adaptations, but only the lower lip showed statistically significant postsurgical adaptations. Soft and hard tissue chin changes were significantly correlated for each of the intervals evaluated: presurgery to splint removal (r=0.92), presurgery to 1 year postsurgery (r=0.86), and splint removal to 1 year postsurgery (r=0.77). A statistically significant correlation between lower incisor and lower lip was found only between presurgery and 1 year postsurgery (r=0.55). At 1 year after surgery, 31% of the lower lip changes were explained by changes in the lower incisor position while 73% of the soft tissue chin changes were explained by the hard chin. This study suggests that 3D soft tissue response to mandibular advancement surgery is markedly variable
Scaling limit of virtual states of triatomic systems
For a system with three identical atoms, the dependence of the wave
virtual state energy on the weakly bound dimer and trimer binding energies is
calculated in a form of a universal scaling function. The scaling function is
obtained from a renormalizable three-body model with a pairwise Dirac-delta
interaction. It was also discussed the threshold condition for the appearance
of the trimer virtual state.Comment: 9 pages, 3 figure
Renormalized Path Integral for the Two-Dimensional Delta-Function Interaction
A path-integral approach for delta-function potentials is presented.
Particular attention is paid to the two-dimensional case, which illustrates the
realization of a quantum anomaly for a scale invariant problem in quantum
mechanics. Our treatment is based on an infinite summation of perturbation
theory that captures the nonperturbative nature of the delta-function bound
state. The well-known singular character of the two-dimensional delta-function
potential is dealt with by considering the renormalized path integral resulting
from a variety of schemes: dimensional, momentum-cutoff, and real-space
regularization. Moreover, compatibility of the bound-state and scattering
sectors is shown.Comment: 26 pages. The paper was significantly expanded and numerous equations
were added for the sake of clarity; the main results and conclusions are
unchange
Is cosmology consistent?
We perform a detailed analysis of the latest CMB measurements (including
BOOMERaNG, DASI, Maxima and CBI), both alone and jointly with other
cosmological data sets involving, e.g., galaxy clustering and the Lyman Alpha
Forest. We first address the question of whether the CMB data are internally
consistent once calibration and beam uncertainties are taken into account,
performing a series of statistical tests. With a few minor caveats, our answer
is yes, and we compress all data into a single set of 24 bandpowers with
associated covariance matrix and window functions. We then compute joint
constraints on the 11 parameters of the ``standard'' adiabatic inflationary
cosmological model. Out best fit model passes a series of physical consistency
checks and agrees with essentially all currently available cosmological data.
In addition to sharp constraints on the cosmic matter budget in good agreement
with those of the BOOMERaNG, DASI and Maxima teams, we obtain a heaviest
neutrino mass range 0.04-4.2 eV and the sharpest constraints to date on gravity
waves which (together with preference for a slight red-tilt) favors
``small-field'' inflation models.Comment: Replaced to match accepted PRD version. 14 pages, 12 figs. Tiny
changes due to smaller DASI & Maxima calibration errors. Expanded neutrino
and tensor discussion, added refs, typos fixed. Combined CMB data, window and
covariance matrix at http://www.hep.upenn.edu/~max/consistent.html or from
[email protected]
A Study of Memetic Search with Multi-parent Combination for UBQP
We present a multi-parent hybrid genetic–tabu algorithm (denoted by GTA) for the Unconstrained Binary Quadratic Programming (UBQP) problem, by incorporating tabu search into the framework of genetic algorithm. In this paper, we propose a new multi-parent combination operator for generating offspring solutions. A pool updating strategy based on a quality-and-distance criterion is used to manage the population. Experimental comparisons with leading methods for the UBQP problem on 25 large public instances demonstrate the efficacy of our proposed algorithm in terms of both solution quality and computational efficiency
Defects and glassy dynamics in solid He-4: Perspectives and current status
We review the anomalous behavior of solid He-4 at low temperatures with
particular attention to the role of structural defects present in solid. The
discussion centers around the possible role of two level systems and structural
glassy components for inducing the observed anomalies. We propose that the
origin of glassy behavior is due to the dynamics of defects like dislocations
formed in He-4. Within the developed framework of glassy components in a solid,
we give a summary of the results and predictions for the effects that cover the
mechanical, thermodynamic, viscoelastic, and electro-elastic contributions of
the glassy response of solid He-4. Our proposed glass model for solid He-4 has
several implications: (1) The anomalous properties of He-4 can be accounted for
by allowing defects to freeze out at lowest temperatures. The dynamics of solid
He-4 is governed by glasslike (glassy) relaxation processes and the
distribution of relaxation times varies significantly between different
torsional oscillator, shear modulus, and dielectric function experiments. (2)
Any defect freeze-out will be accompanied by thermodynamic signatures
consistent with entropy contributions from defects. It follows that such
entropy contribution is much smaller than the required superfluid fraction, yet
it is sufficient to account for excess entropy at lowest temperatures. (3) We
predict a Cole-Cole type relation between the real and imaginary part of the
response functions for rotational and planar shear that is occurring due to the
dynamics of defects. Similar results apply for other response functions. (4)
Using the framework of glassy dynamics, we predict low-frequency yet to be
measured electro-elastic features in defect rich He-4 crystals. These
predictions allow one to directly test the ideas and very presence of glassy
contributions in He-4.Comment: 33 pages, 13 figure
Recent progress on univariate and multivariate polynomial and spline quasi-interpolants
Polynomial and spline quasi-interpolants (QIs) are practical and effective approximation operators. Among their remarkable properties, let us cite for example: good shape properties, easy computation and evaluation (no linear system to solve), uniform boundedness independently of the degree (polynomials) or of the partition (splines), good approximation order. We shall emphasize new results on various types of univariate and multivariate polynomial or spline QIs, depending on the nature of coefficient functionals, which can be differential, discrete or integral. We shall also present some applications of QIs to numerical methods
- …