34 research outputs found
Chaos and isospin symmetry breaking in rotational nuclei
For nuclei with N = Z, the isospin degree of freedom is important and, for
deformed systems, rotational bands of different isospin may be expected at low
excitation energies. We have investigated, in a simple model space, the
influence of the isospin-breaking Coulomb interaction on the degree of
chaoticity of these rotational bands. The statistical measures used rely on an
analysis of level-spacing distributions, which are extremely difficult to
measure experimentally. We show, however, that the overlap intergrals between
states of similar frequency reflect well the degree of chaoticity. This
quantity is closely related to the experimentally more accessible gamma-decay
``spreading width''.Comment: 13 pages, 9 figures, Elsevie
Effects of resonant single-particle states on pairing correlations
Effects of resonant single-particle (s.p.) states on the pairing correlations
are investigated by an exact treatment of the pairing Hamiltonian on the Gamow
shell model basis. We introduce the s.p. states with complex energies into the
Richardson equations. The solution shows the property that the resonant s.p.
states with large widths are less occupied. The importance of many-body
correlations between bound and resonant prticle pairs is shown.Comment: 4 pages, 3 figures, to be published in Phys. Rev.
Theoretical description of deformed proton emitters: nonadiabatic coupled-channel method
The newly developed nonadiabatic method based on the coupled-channel
Schroedinger equation with Gamow states is used to study the phenomenon of
proton radioactivity. The new method, adopting the weak coupling regime of the
particle-plus-rotor model, allows for the inclusion of excitations in the
daughter nucleus. This can lead to rather different predictions for lifetimes
and branching ratios as compared to the standard adiabatic approximation
corresponding to the strong coupling scheme. Calculations are performed for
several experimentally seen, non-spherical nuclei beyond the proton dripline.
By comparing theory and experiment, we are able to characterize the angular
momentum content of the observed narrow resonance.Comment: 12 pages including 10 figure
Semiempirical Shell Model Masses with Magic Number Z = 126 for Superheavy Elements
A semiempirical shell model mass equation applicable to superheavy elements
up to Z = 126 is presented and shown to have a high predictive power. The
equation is applied to the recently discovered superheavy nuclei Z = 118, A =
293 and Z = 114, A = 289 and their decay products.Comment: 7 pages, including 2 figures and 2 table
Relativistic mean-field study of neutron-rich nuclei
A relativistic mean-field model is used to study the ground-state properties
of neutron-rich nuclei. Nonlinear isoscalar-isovector terms, unconstrained by
present day phenomenology, are added to the model Lagrangian in order to modify
the poorly known density dependence of the symmetry energy. These new terms
soften the symmetry energy and reshape the theoretical neutron drip line
without compromising the agreement with existing ground-state information. A
strong correlation between the neutron radius of 208Pb and the binding energy
of valence orbitals is found: the smaller the neutron radius of 208Pb, the
weaker the binding energy of the last occupied neutron orbital. Thus, models
with the softest symmetry energy are the first ones to drip neutrons. Further,
in anticipation of the upcoming one-percent measurement of the neutron radius
of 208Pb at the Thomas Jefferson Laboratory, a close relationship between the
neutron radius of 208Pb and neutron radii of elements of relevance to atomic
parity-violating experiments is established.Comment: 14 pages, 5 figure
Shell model in the complex energy plane and two-particle resonances
An implementation of the shell-model to the complex energy plane is
presented. The representation used in the method consists of bound
single-particle states, Gamow resonances and scattering waves on the complex
energy plane. Two-particle resonances are evaluated and their structure in
terms of the single-particle degreees of freedom are analysed. It is found that
two-particle resonances are mainly built upon bound states and Gamow
resonances, but the contribution of the scattering states is also important.Comment: 20 pages, 9 figures, submitted to Phys.Rev.
Role of dynamical particle-vibration coupling in reconciliation of the puzzle for spherical proton emitters
It has been observed that decay rate for proton emission from
single particle state is systematically quenched compared with the prediction
of a one dimensional potential model although the same model successfully
accounts for measured decay rates from and states. We
reconcile this discrepancy by solving coupled-channels equations, taking into
account couplings between the proton motion and vibrational excitations of a
daughter nucleus. We apply the formalism to proton emitting nuclei
Re to show that there is a certain range of parameter set of the
excitation energy and the dynamical deformation parameter for the quadrupole
phonon excitation which reproduces simultaneously the experimental decay rates
from the 2, 3 and 1 states in these nuclei.Comment: RevTex, 12 pages, 4 eps figure
Shell Corrections of Superheavy Nuclei in Self-Consistent Calculations
Shell corrections to the nuclear binding energy as a measure of shell effects
in superheavy nuclei are studied within the self-consistent Skyrme-Hartree-Fock
and Relativistic Mean-Field theories. Due to the presence of low-lying proton
continuum resulting in a free particle gas, special attention is paid to the
treatment of single-particle level density. To cure the pathological behavior
of shell correction around the particle threshold, the method based on the
Green's function approach has been adopted. It is demonstrated that for the
vast majority of Skyrme interactions commonly employed in nuclear structure
calculations, the strongest shell stabilization appears for Z=124, and 126, and
for N=184. On the other hand, in the relativistic approaches the strongest
spherical shell effect appears systematically for Z=120 and N=172. This
difference has probably its roots in the spin-orbit potential. We have also
shown that, in contrast to shell corrections which are fairly independent on
the force, macroscopic energies extracted from self-consistent calculations
strongly depend on the actual force parametrisation used. That is, the A and Z
dependence of mass surface when extrapolating to unknown superheavy nuclei is
prone to significant theoretical uncertainties.Comment: 14 pages REVTeX, 8 eps figures, submitted to Phys. Rev.
Renormalized Path Integral for the Two-Dimensional Delta-Function Interaction
A path-integral approach for delta-function potentials is presented.
Particular attention is paid to the two-dimensional case, which illustrates the
realization of a quantum anomaly for a scale invariant problem in quantum
mechanics. Our treatment is based on an infinite summation of perturbation
theory that captures the nonperturbative nature of the delta-function bound
state. The well-known singular character of the two-dimensional delta-function
potential is dealt with by considering the renormalized path integral resulting
from a variety of schemes: dimensional, momentum-cutoff, and real-space
regularization. Moreover, compatibility of the bound-state and scattering
sectors is shown.Comment: 26 pages. The paper was significantly expanded and numerous equations
were added for the sake of clarity; the main results and conclusions are
unchange
Semiempirical Shell Model Masses with Magic Number Z=126 for Translead Elements with N smaller or equal to 126
A semiempirical shell model mass equation based on magic number Z=126 and
applicable to translead elements with N smaller or equal to 126 is presented.
For alpha decay energies the equation is shown to have a high predictive power
and an rms deviation from the data of about 100 keV. The rms deviations for
masses and other mass differences are between about 200 and 300 keV.Comment: 8 pages including 3 figures and 3 table