123 research outputs found

    Cosmic age problem revisited in the holographic dark energy model

    Get PDF
    Because of an old quasar APM 08279+5255 at z=3.91z=3.91, some dark energy models face the challenge of the cosmic age problem. It has been shown by Wei and Zhang [Phys. Rev. D {\bf 76}, 063003 (2007)] that the holographic dark energy model is also troubled with such a cosmic age problem. In order to accommodate this old quasar and solve the age problem, we propose in this Letter to consider the interacting holographic dark energy in a non-flat universe. We show that the cosmic age problem can be eliminated when the interaction and spatial curvature are both involved in the holographic dark energy model.Comment: 7 pages, 3 figures; v2: typos corrected, version for publication in Phys.Lett.B; v3: typos in eqs (17,18) correcte

    Quantum gravity corrections to the Schwarzschild mass

    Get PDF
    Vacuum spherically symmetric Einstein gravity in N≄4N\ge 4 dimensions can be cast in a two-dimensional conformal nonlinear sigma model form by first integrating on the (N−2)(N-2)-dimensional (hyper)sphere and then performing a canonical transformation. The conformal sigma model is described by two fields which are related to the Arnowitt-Deser-Misner mass and to the radius of the (N−2)(N-2)-dimensional (hyper)sphere, respectively. By quantizing perturbatively the theory we estimate the quantum corrections to the ADM mass of a black hole.Comment: 18 pages, 8 figures, LaTeX2e, uses epsfig package, accepted for publication in Phys. Rev.

    On Paragrassmann Differential Calculus

    Get PDF
    Explicit general constructions of paragrassmann calculus with one and many variables are given. Relations of the paragrassmann calculus to quantum groups are outlined and possible physics applications are briefly discussed. This paper is the same as the original 9210075 except added Appendix and minor changes in Acknowledgements and References. IMPORTANT NOTE: This paper bears the same title as the Dubna preprint E5-92-392 but is NOT identical to it, containing new results, extended discussions, and references.Comment: 19p

    Vortex structure in exponentially shaped Josephson junctions

    Full text link
    We report the numerical calculations of the static vortex structure and critical curves in exponentially shaped long Josephson junctions for in-line and overlap geometries. Each solution of the corresponding boundary value problem is associated with the Sturm-Liouville problem whose minimal eigenvalue allows to make a conclusion about the stability of the vortex. The change in width of the junction leads to the renormalization of the magnetic flux in comparison to the case of a linear one-dimensional model. We study the influence of the model's parameters and, particularly, the shape parameter on the stability of the states of the magnetic flux. We compare the vortex structure and critical curves for the in-line and overlap geometries. Our numerically constructed critical curve of the Josephson junction matches well with the experimental one.Comment: 8 pages, 10 figures, NATO Advanced Research Workshop on "Vortex dynamics in superconductors and other complex systems" Yalta, Crimea, Ukraine, 13-17 September 200

    Open strings, 2D gravity and AdS/CFT correspondence

    Get PDF
    We present a detailed discussion of the duality between dilaton gravity on AdS_2 and open strings. The correspondence between the two theories is established using their symmetries and field theoretical, thermodynamic, and statistical arguments. We use the dual conformal field theory to describe two-dimensional black holes. In particular, all the semiclassical features of the black holes, including the entropy, have a natural interpretation in terms of the dual microscopic conformal dynamics. The previous results are discussed in the general framework of the Anti-de Sitter/Conformal Field Theory dualities.Comment: 22 pages, Typeset using REVTE

    Quantum dilaton gravity as a linear dilaton conformal field theory

    Get PDF
    A model of matter-coupled gravity in two dimensions is quantized. The crucial requirement for performing the quantization is the vanishing of the conformal anomaly, which is achieved by tuning a parameter in the interaction potential. The spectrum of the theory is determined by mapping the model first onto a field theory with a Liouville interaction, then onto a linear dilaton conformal field theory. In absence of matter fields a pure gauge theory with massless ground state is found; otherwise it is possible to minimally couple up to 11 matter scalar fields: in this case the ground state is tachyonic and the matter sector decouples, like the transverse oscillators in the critical bosonic string.Comment: 7 pages, RevTeX4 file. v2: some comments and one reference adde

    The Stress-Energy Tensor in Soluble Models of Spherically Symmetric Charged Black Hole Evaporation

    Get PDF
    We study the decay of a near-extremal black hole in AdS2_2, related to the near-horizon region of 3+1-dimensional Reissner-Nordstr\"om spacetime, following Fabbri, Navarro, and Navarro-Salas. Back-reaction is included in a semiclassical approximation. Calculations of the stress-energy tensor of matter coupled to the physical spacetime for an affine null observer demonstrate that the black hole evaporation proceeds smoothly and the near-extremal black hole evolves back to an extremal ground state, until this approximation breaks down.Comment: 19 pages, 14 figure

    Helium identification with LHCb

    Get PDF
    The identification of helium nuclei at LHCb is achieved using a method based on measurements of ionisation losses in the silicon sensors and timing measurements in the Outer Tracker drift tubes. The background from photon conversions is reduced using the RICH detectors and an isolation requirement. The method is developed using pp collision data at √(s) = 13 TeV recorded by the LHCb experiment in the years 2016 to 2018, corresponding to an integrated luminosity of 5.5 fb-1. A total of around 105 helium and antihelium candidates are identified with negligible background contamination. The helium identification efficiency is estimated to be approximately 50% with a corresponding background rejection rate of up to O(10^12). These results demonstrate the feasibility of a rich programme of measurements of QCD and astrophysics interest involving light nuclei

    Measurement of forward charged hadron flow harmonics in peripheral PbPb collisions at √sNN = 5.02 TeV with the LHCb detector

    Get PDF
    Flow harmonic coefficients, v n , which are the key to studying the hydrodynamics of the quark-gluon plasma (QGP) created in heavy-ion collisions, have been measured in various collision systems and kinematic regions and using various particle species. The study of flow harmonics in a wide pseudorapidity range is particularly valuable to understand the temperature dependence of the shear viscosity to entropy density ratio of the QGP. This paper presents the first LHCb results of the second- and the third-order flow harmonic coefficients of charged hadrons as a function of transverse momentum in the forward region, corresponding to pseudorapidities between 2.0 and 4.9, using the data collected from PbPb collisions in 2018 at a center-of-mass energy of 5.02 TeV . The coefficients measured using the two-particle angular correlation analysis method are smaller than the central-pseudorapidity measurements at ALICE and ATLAS from the same collision system but share similar features

    Curvature-bias corrections using a pseudomass method

    Get PDF
    Momentum measurements for very high momentum charged particles, such as muons from electroweak vector boson decays, are particularly susceptible to charge-dependent curvature biases that arise from misalignments of tracking detectors. Low momentum charged particles used in alignment procedures have limited sensitivity to coherent displacements of such detectors, and therefore are unable to fully constrain these misalignments to the precision necessary for studies of electroweak physics. Additional approaches are therefore required to understand and correct for these effects. In this paper the curvature biases present at the LHCb detector are studied using the pseudomass method in proton-proton collision data recorded at centre of mass energy √(s)=13 TeV during 2016, 2017 and 2018. The biases are determined using Z→Ό + ÎŒ - decays in intervals defined by the data-taking period, magnet polarity and muon direction. Correcting for these biases, which are typically at the 10-4 GeV-1 level, improves the Z→Ό + ÎŒ - mass resolution by roughly 18% and eliminates several pathological trends in the kinematic-dependence of the mean dimuon invariant mass
    • 

    corecore