15 research outputs found

    Gate Coupling to Nanoscale Electronics

    Get PDF
    The realization of single-molecule electronic devices, in which a nanometer-scale molecule is connected to macroscopic leads, requires the reproducible production of highly ordered nanoscale gaps in which a molecule of interest is electrostatically coupled to nearby gate electrodes. Understanding how the molecule-gate coupling depends on key parameters is crucial for the development of high-performance devices. Here we directly address this, presenting two- and three-dimensional finite-element electrostatic simulations of the electrode geometries formed using emerging fabrication techniques. We quantify the gate coupling intrinsic to these devices, exploring the roles of parameters believed to be relevant to such devices. These include the thickness and nature of the dielectric used, and the gate screening due to different device geometries. On the singlemolecule ( ~ 1 nm) scale, we find that device geometry plays a greater role in the gate coupling than the dielectric constant or the thickness of the insulator. Compared to the typical uniform nanogap electrode geometry envisioned, we find that nonuniform tapered electrodes yield a significant 3 orders of magnitude improvement in gate coupling. We also find that in the tapered geometry the polarizability of a molecular channel works to enhance the gate coupling

    Controlled Doping of Graphene Using Ultraviolet Irradiation

    Get PDF
    The electronic properties of graphene are tunable via doping, making it attractive in low dimensional organic electronics. Common methods of doping graphene, however, adversely affect charge mobility and degrade device performance. We demonstrate a facile shadow mask technique of defining electrodes on graphene grown by chemical vapor deposition (CVD) thereby eliminating the use of detrimental chemicals needed in the corresponding lithographic process. Further, we report on the controlled, effective, and reversible doping of graphene via ultraviolet (UV) irradiation with minimal impact on charge mobility. The change in charge concentration saturates at ~2 x 1012cm-2 and the quantum yield is 10-5 e/photon upon initial UV exposure. This simple and controlled strategy opens the possibility of doping wafer-size CVD graphene for diverse applications

    Effect of Thermal Treatments on the Transduction Behaviors of Conductometric Hydrogen Gas Sensors Integrated with HCl-Doped Polyaniline Nanofibers

    Get PDF
    We present the effect of thermal treatments on the transduction behaviors of HCl-doped polyaniline (PANI) nanofibers integrated in conductometric devices upon exposure to 1% H2 (carried by N2). After drying in N2 at 25ÂșC for 12 hours, devices showed a ~10% decrease in electrical resistance upon exposure to 1% H2. However, devices subject to 12-hour drying in N2 at 25ÂșC followed by further thermal treatments in N2 at 100ÂșC, 164ÂșC or 200ÂșC for 30 minutes showed different transduction behaviors. Specifically, devices subject to thermal treatments at 100ÂșC and 164ÂșC showed a decrease in electrical resistance by ~7% and \u3c0.5%, respectively. More interestingly, the device subject to thermal treatment at 200ÂșC showed a transduction behavior with opposite polarity, i.e. a ~5% increase in electrical resistance upon exposure to 1% H2. SEM, FTIR and TGA were employed to investigate the effect of thermal treatments on the morphology and chemical characteristics of HCl-doped polyaniline nanofibers. The results indicated that the change in the devices? interesting transduction behaviors might be related to the thermal treatment effects on the HCl-doped PANI nanofibers in (i) removal of adsorbed water, and (ii) crosslinking and/or degradation of polymer backbones

    Photoluminescence and Band Gap Modulation in Graphene Oxide

    Get PDF
    We report broadband visible photoluminescence from solid graphene oxide, and modifications of the emission spectrum by progressive chemical reduction. The data suggest a gapping of the two-dimensional electronic system by removal of π-electrons. We discuss possible gapping mechanisms, and propose that a Kekule pattern of bond distortions may account for the observed behavior

    DNA-decorated carbon nanotube-based FETs as ultrasensitive chemical sensors: Discrimination of homologues, structural isomers, and optical isomers

    Get PDF
    We have explored the abilities of all-electronic DNA-carbon nanotube (DNA-NT) vapor sensors to discriminate very similar classes ofmolecules.We screened hundreds ofDNA-NT devices against a panel of compounds chosen because of their similarities. We demonstrated that DNA-NT vapor sensors readily discriminate between series of chemical homologues that differ by single methyl groups. DNA-NT devices also discriminate among structural isomers and optical isomers, a trait common in biological olfactory systems, but only recently demonstrated for electronic FET based chemical sensors

    Large area molybdenum disulphide-epitaxial graphene vertical Van der Waals heterostructures

    Get PDF
    International audienceTwo-dimensional layered transition metal dichalcogenides (TMDCs) show great potential for optoelectronic devices due to their electronic and optical properties. A metal-semiconductor interface, as epitaxial graphene - molybdenum disulfide (MoS2), is of great interest from the standpoint of fundamental science, as it constitutes an outstanding platform to investigate the interlayer interaction in van der Waals heterostructures. Here, we study large area MoS2-graphene-heterostructures formed by direct transfer of chemical-vapor deposited MoS2 layer onto epitaxial graphene/SiC. We show that via a direct transfer, which minimizes interface contamination, we can obtain high quality and homogeneous van der Waals heterostructures. Angle-resolved photoemission spectroscopy (ARPES) measurements combined with Density Functional Theory (DFT) calculations show that the transition from indirect to direct bandgap in monolayer MoS2 is maintained in these heterostructures due to the weak van der Waals interaction with epitaxial graphene. A downshift of the Raman 2D band of the graphene, an up shift of the A1g peak of MoS2 and a significant photoluminescence quenching are observed for both monolayer and bilayer MoS2 as a result of charge transfer from MoS2 to epitaxial graphene under illumination. Our work provides a possible route to modify the thin film TDMCs photoluminescence properties via substrate engineering for future device design

    Size Selection of Metal Nanoparticles on Few Layer Graphene

    No full text
    We find layer number dependence in the size of metal nanoparticles grown on 1 to 10 layer graphene. Graphene is an attractive substrate for investigating and using nanoparticles due to its loose interaction with them. To preserve this condition it is ideal to grow particles in place rather than deposit them from solution. We find that annealing of evaporated metal nanoparticles on graphene and few layer graphene surfaces tightens their size distribution. The number of graphene layers changes the selected size. These results are in quantitative agreement with a model incorporating surface, bulk, and coulomb free energies
    corecore