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Controlled Doping of Graphene Using Ultraviolet Irradiation

Abstract
The electronic properties of graphene are tunable via doping, making it attractive in low dimensional organic
electronics. Common methods of doping graphene, however, adversely affect charge mobility and degrade
device performance. We demonstrate a facile shadow mask technique of defining electrodes on graphene
grown by chemical vapor deposition (CVD) thereby eliminating the use of detrimental chemicals needed in
the corresponding lithographic process. Further, we report on the controlled, effective, and reversible doping
of graphene via ultraviolet (UV) irradiation with minimal impact on charge mobility. The change in charge
concentration saturates at ~2 x 1012cm-2 and the quantum yield is 10-5 e/photon upon initial UV exposure.
This simple and controlled strategy opens the possibility of doping wafer-size CVD graphene for diverse
applications.
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The electronic properties of graphene are tunable via doping, making it attractive in low

dimensional organic electronics. Common methods of doping graphene, however, adversely affect

charge mobility and degrade device performance. We demonstrate a facile shadow mask technique

of defining electrodes on graphene grown by chemical vapor deposition (CVD) thereby eliminating

the use of detrimental chemicals needed in the corresponding lithographic process. Further, we

report on the controlled, effective, and reversible doping of graphene via ultraviolet (UV)

irradiation with minimal impact on charge mobility. The change in charge concentration saturates

at �2� 1012 cm–2 and the quantum yield is �10�5 e/photon upon initial UV exposure. This simple

and controlled strategy opens the possibility of doping wafer-size CVD graphene for diverse

applications. VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4729828]

The exceptionally high room temperature carrier mobil-

ity of graphene offers potential for device applications that

have attracted enormous interest in the research community.

Various methods have been used to tailor the graphene prop-

erties for desired applications, including chemical doping,1–3

electrochemical doping,4 and metal contact doping,5 and

other metals including bismuth and antimony.6 Reports of

conventional chemical doping have relied on strong dopants

such as potassium7 and ammonia gas,2 which act as strongly

charged impurities and consequently degrade the carrier mo-

bility. It is highly desirable therefore to develop alternative

approaches to controlled doping of graphene nanostructures

that avoid these effects. Here, we realize controlled doping

of graphene grown by chemical vapor deposition (CVD) by

exposure to ultraviolet (UV) radiation with minimal impact

on the material’s electronic properties, including carrier

mobility.

Figure 1(a) is an optical micrograph of a graphene film

synthesized by CVD and then transferred onto 300 nm oxide

thickness silicon substrate, using a method reported previ-

ously.8,9 A typical Raman spectrum (Fig. 1(b)) shows a sym-

metric and high intensity 2D band at �2695 cm�1,

characteristic of single layer graphene.10 Moreover, the D

band (�1345 cm�1) intensity, whose relative strength is pro-

portional to disorder in graphitic materials, is only 0%–5%

of the G peak (�1590 cm�1) intensity, indicating that the

graphene material used here is of high quality, as confirmed

by electron transport data presented below.

By accurately controlling the growth time and/or posi-

tion in the furnace, we grew single crystal hexagonal flakes

of graphene in random locations with desired size (up to

50 lm) and areal density.11 In order to avoid sample contam-

ination from polymeric resists,12 contacts were then fabri-

cated to single flakes using a mechanical shadow mask, as

follows. A transmission electron microscopy (TEM) sample

grid (Electron Microscopy Sciences TVM-Cu, with 150,

200, 300, 400 mesh holes) was carefully placed over a

FIG. 1. Graphene synthesized by CVD. (a) Optical micrograph of graphene

flakes transferred onto a silicon wafer with a 300 nm-thick oxide. (b) Typical

Raman spectrum measured on a graphene flake. (c) Conductance-gate volt-

age characteristic of a single flake sample measured using the substrate as a

backgate. The carrier mobility of 2000–3000 cm2/V-s is comparable to that

for exfoliated graphene on a similar substrate. Inset: Optical micrograph of a

graphene flake contacted by two gold electrodes using shadow mask

method.

a)Author to whom correspondence should be addressed. Electronic mail:

cjohnson@physics.upenn.edu.
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graphene flake and slightly fixed to the substrate with silver

paint. Electrical contacts (100 nm thick Ag or Au) were then

evaporated through the TEM grid shadow mask onto the sub-

strate, and the TEM grid was removed to yield metal electro-

des in contact with a pre-selected graphene flake. The

electrical properties of the flake could be measured in a

three-terminal geometry, with the degenerately doped silicon

substrate used as a backgate. The measured device transfer

characteristics and mobility (see below) indicate that this

method of contact fabrication leaves the graphene in better

condition than when conventional lithographic methods are

used. The inset to Fig. 1(c) shows a graphene flake that was

contacted by two gold electrodes in the manner just

described. Future experiments will be directed towards

achieving yet more accurate control over the graphene flake

size and density to increase the yield of high-quality gra-

phene devices produced with this method.

Figure 1(c) is a plot of the conductance G, expressed in

units of the conductance quantum e2/h, versus gate voltage

(Vg) for an as-fabricated CVD graphene device measured

under vaccum of 10 mTorr. The G-Vg plot shows a typical

“V” shape that is characteristic of graphene, with enhanced

current in the hole-branch compared to that in the electron-

branch; similar observations on exfoliated graphene were

attributed to different contact resistances for the different

carrier types.13 From its minimum (the Dirac point), the con-

ductance increases linearly with Vg for both carrier polar-

ities, indicating that the mobility is independent of carrier

concentration and type, in agreement with measurements of

exfoliated graphene14 as well for graphene produced by

CVD.8,15 At gate voltages further from the Dirac point,

G(Vg) shows a sub-linear growth, most likely due to the

presence of charged impurities or water underneath the gra-

phene flake.7 Here, the minimum conductivity (Gmin) and

corresponding gate voltage (Vg,min) were obtained by extrap-

olating the linear portion of the G-Vg curves. As shown in

Fig. 1(c), Gmin shows a similar value as exfoliated graphene,

of multiple of 4e2/h, a well-established universal value for

ideal graphene. The fact that Vg,min exhibits a non-zero

value, along with the fact that the width of the minimum

conductivity region in Vg is broad, indicates the existence of

disorder and presence of charge impurities.1

A key aspect of the data is that the room temperature

hole and electron mobility are found to be large, 3060 and

1630 cm2/V-s, respectively, comparable to values for exfoli-

ated graphene (2000–10 000 cm2/V-s) measured by us and

others.16,17 The Raman and electron transport data provide

strong evidence that the CVD graphene samples produced

with our method are of high structural and electronic quality.

Figure 2(a) shows G-Vg plots for an as-prepared gra-

phene device and for the same device at four different carrier

concentration (doping) levels induced by irradiation with

UV light (k¼ 365 nm) for progressively longer times, all

measured at 295 K and 10 mTorr. Upon UV-doping, the fol-

lowing features are seen: (1) the Dirac point back gate volt-

age, Vg, min, gradually shifts to more negative voltage,

indicative of n-type doping due to illumination; (2) the shift

of the G-Vg characteristic is rigid, with almost no change in

the minimum conductance or the width of the V-shaped

curve. We find that the electron mobility is unchanged or

even increased while the hole mobility is slightly decreased

(both effects are no more than 5% in size); (3) as seen in

Fig. 2(b), the UV doping effect shows a saturation behavior

at � 2� 1012 e/cm2 with a quantum yield of �10�5 e/photon

upon initial illumination.

These observations show that the carrier addition (dop-

ing) induced by UV irradiation leads to no significant change

in the carrier scattering rate. The physical rationale for such

a phenomenon remains unclear. The observation is similar to

what was found for graphene subject to chemical gating by

exposure to gas vapors17,18 and differs dramatically from the

effect of alkali atom dopants like potassium, where the shift

in the Dirac point is accompanied by a sharp decrease in mo-

bility.7 The potassium data were well explained by a picture

where ionized potassium ions act as screened Coulomb scat-

tering sites. Theory predicts a conductance that varies line-

arly with Vg, where the slope is proportional to the carrier

mobility, which is inversely proportional to the charged im-

purity density, nimp: 1/l ! nimp for both hole and electron

carriers.19 This behavior is not characteristic of our data, as

seen in the inset in Fig. 2(b): 1/l is essentially constant with

doping time, which reflects a change in the carrier density.

The UV doping effect described here is stable under

vacuum conditions, slowly reverses when the sample is

returned to ambient (timescale of days), and reverses within

tens of minutes at elevated temperatures in ambient. The re-

versible nature of the doping is reflected in Fig. 3, which

shows the G(Vg) characteristics for a CVD graphene device

FIG. 2. UV doping of CVD graphene. (a) The conductance (G) versus gate

voltage (Vg) curves for different doping time, measured at room temperature

and a pressure of 10�2 Torr. Dotted lines are linear fits used to obtain the

carrier mobilities shown in the inset table. (b) Injected carrier concentrations

obtained in (a) as a function of photon flux and an exponential fit. Inset

shows the plot of inverse carrier mobilities as a function of doping time.
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that is first doped by UV irradiation for 16 min, regenerated

by annealing at 80 �C for 45 min in ambient, and then UV-

doped a second time for 16 min (see inset). All measure-

ments are done at 295 K and 10 mTorr. We observe that

curves 1 and 3 are almost identical, indicating that the elec-

tronic transport properties of as-fabricated CVD-graphene

device are fully recovered by annealing. Re-exposure to UV-

irradiation at the same condition leads to a G(Vg) trace iden-

tical to that measured after the first doping step (curves 2 and

4). This provides strong evidence that the UV-doping is re-

versible and reproducible with no significant damage or

“poisoning” effect.

The exact doping-de-doping mechanism is not clear at

present. Recent work20–23 has shown that charge transfer at

the substrate interface plays a vital role in the electronic

properties of graphene and that this can be tuned by varying

the identity of molecules between the silicon substrate and

the graphene channel. A shift of the Fermi level, DEF, of

�0.35 to 0.09 eV was reported by surface treatment of the

substrate, including adding a hydrophobic monolayer

between graphene and the silicon substrate,20 modifying the

substrate with silane or polymer molecules with amine or

fluorine-containing groups,21 or trapping water molecular

between graphene and the silicon substrate.23 In the present

work, the gradual shift of Dirac point (i.e., Vg, min) to nega-

tive gate voltage upon illumination suggests the influence of

a similar change in surface charge on the electronic proper-

ties of the graphene. Electron trapping adsorbate groups21,23

on the graphene surface or graphene-substrate interface (pos-

sibly O2� or H2O� derived), a natural consequence of expo-

sure to air, would typically lead to p-type doping as is

commonly observed for graphene FET devices, including

those presented here. Upon UV exposure, an electron-hole

pair is generated that liberates the adsorbates via hole recom-

bination (e.g., hþ þ O2� ! O2 (gas)) on both sides of CVD

graphene, releasing electrons that then contribute toward

n-doping (Figures 4(a) and 4(b)). Since this process, unlike

chemical doping, does not significantly modify the structure

of graphene, one expects only limited effect on the carrier

mobility, consistent with our observations.

In conclusion, we have demonstrated a facile shadow

mask technique to define electrodes on CVD graphene and

report a method to controllably change the carrier concentra-

tion in the graphene via UV irradiation. Unlike other doping

techniques with strong dopant atoms or molecules, this

method was found to have minimal impact on the material’s

electronic properties other than the carrier concentration,

evidenced by the observation of minimal variation in carrier

mobility during the doping and de-doping process. This sim-

ple and controlled doping strategy allows tuning the electric

properties of wafer-size CVD graphene in defined areas

through the use of light absorbing masks and it opens the

possibility of diverse applications.
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