257 research outputs found

    Supergravity Inflation on the Brane

    Get PDF
    We study N=1 Supergravity inflation in the context of the braneworld scenario. Particular attention is paid to the problem of the onset of inflation at sub-Planckian field values and the ensued inflationary observables. We find that the so-called η\eta-problem encountered in supergravity inspired inflationary models can be solved in the context of the braneworld scenario, for some range of the parameters involved. Furthermore, we obtain an upper bound on the scale of the fifth dimension, M_5 \lsim 10^{-3} M_P, in case the inflationary potential is quadratic in the inflaton field, ϕ\phi. If the inflationary potential is cubic in ϕ\phi, consistency with observational data requires that M5≃9.2×10−4MPM_5 \simeq 9.2 \times 10^{-4} M_P.Comment: 6 pages, 1 figure, to appear in Phys. Rev.

    Inflation with a constant ratio of scalar and tensor perturbation amplitudes

    Get PDF
    The single scalar field inflationary models that lead to scalar and tensor perturbation spectra with amplitudes varying in direct proportion to one another are reconstructed by solving the Stewart-Lyth inverse problem to next-to-leading order in the slow-roll approximation. The potentials asymptote at high energies to an exponential form, corresponding to power law inflation, but diverge from this model at low energies, indicating that power law inflation is a repellor in this case. This feature implies that a fine-tuning of initial conditions is required if such models are to reproduce the observations. The required initial conditions might be set through the eternal inflation mechanism. If this is the case, it will imply that the spectral indices must be nearly constant, making the underlying model observationally indistinguishable from power law inflation.Comment: 20 pages, 7 figures. Major changes to the Introduction following referee's comments. One figure added. Some other minor changes. No conclusion was modifie

    Evidence against or for topological defects in the BOOMERanG data ?

    Full text link
    The recently released BOOMERanG data was taken as ``contradicting topological defect predictions''. We show that such a statement is partly misleading. Indeed, the presence of a series of acoustic peaks is perfectly compatible with a non-negligible topological defects contribution. In such a mixed perturbation model (inflation and topological defects) for the source of primordial fluctuations, the natural prediction is a slightly lower amplitude for the Doppler peaks, a feature shared by many other purely inflationary models. Thus, for the moment, it seems difficult to rule out these models with the current data.Comment: 4 pages, 1 figure. Some changes following extraordinarily slow referee Reports and new data. Main results unchanged (sorry

    Primeval Corrections to the CMB Anisotropies

    Full text link
    We show that deviations of the quantum state of the inflaton from the thermal vacuum of inflation may leave an imprint in the CMB anisotropies. The quantum dynamics of the inflaton in such a state produces corrections to the inflationary fluctuations, which may be observable. Because these effects originate from IR physics below the Planck scale, they will dominate over any trans-Planckian imprints in any theory which obeys decoupling. Inflation sweeps away these initial deviations and forces its quantum state closer to the thermal vacuum. We view this as the quantum version of the cosmic no-hair theorem. Such imprints in the CMB may be a useful, independent test of the duration of inflation, or of significant features in the inflaton potential about 60 e-folds before inflation ended, instead of an unlikely discovery of the signatures of quantum gravity. The absence of any such substructure would suggest that inflation lasted uninterrupted much longer than O(100){\cal O}(100) e-folds.Comment: 17 pages, latex, no figures; v3: added references and comments, final version to appear in Phys. Rev.

    N=1 Supergravity Chaotic Inflation in the Braneworld Scenario

    Full text link
    We study a N=1 Supergravity chaotic inflationary model, in the context of the braneworld scenario. It is shown that successful inflation and reheating consistent with phenomenological constraints can be achieved via the new terms in the Friedmann equation arising from brane physics. Interestingly, the model satisfies observational bounds with sub-Planckian field values, implying that chaotic inflation on the brane is free from the well known difficulties associated with the presence of higher order non-renormalizable terms in the superpotential. A bound on the mass scale of the fifth dimension, M_5 \gsim 1.3 \times 10^{-6} M_P, is obtained from the requirement that the reheating temperature be higher than the temperature of the electroweak phase transition.Comment: 5 pages, 1 Table, Revtex

    Adiabatic perturbations in pre big bang models: matching conditions and scale invariance

    Get PDF
    At low energy, the four-dimensional effective action of the ekpyrotic model of the universe is equivalent to a slightly modified version of the pre big bang model. We discuss cosmological perturbations in these models. In particular we address the issue of matching the perturbations from a collapsing to an expanding phase in full generality. We show that, generically, one obtains n=0n=0 for the spectrum of scalar perturbations in the original pre big model (with vanishing potential). When an exponential potential for the dilaton is included, a scale invariant spectrum (n=1n=1) of adiabatic scalar perturbations is produced under very generic matching conditions, both in a modified pre big bang and ekpyrotic scenario. We also derive general results valid for power law scale factors matched to a radiation dominated era.Comment: 11 pages, 1 figure, revised version with small corrections to match version in print. Results and conclusions unchange

    Cosmological parameter estimation and the inflationary cosmology

    Get PDF
    We consider approaches to cosmological parameter estimation in the inflationary cosmology, focussing on the required accuracy of the initial power spectra. Parametrizing the spectra, for example by power-laws, is well suited to testing the inflationary paradigm but will only correctly estimate cosmological parameters if the parametrization is sufficiently accurate, and we investigate conditions under which this is achieved both for present data and for upcoming satellite data. If inflation is favoured, reliable estimation of its physical parameters requires an alternative approach adopting its detailed predictions. For slow-roll inflation, we investigate the accuracy of the predicted spectra at first and second order in the slow-roll expansion (presenting the complete second-order corrections for the tensors for the first time). We find that within the presently-allowed parameter space, there are regions where it will be necessary to include second-order corrections to reach the accuracy requirements of MAP and Planck satellite data. We end by proposing a data analysis pipeline appropriate for testing inflation and for cosmological parameter estimation from high-precision data.Comment: 15 pages RevTeX file with figures incorporated. Slow-roll inflation module for use with the CAMB program can be found at http://astronomy.cpes.susx.ac.uk/~sleach/inflation/ This version corrects a typo in the definition of z_S (after Eq.1) and supersedes the journal versio

    Recurrent dynamical symmetry breaking and restoration by Wilson lines at finite densities on a torus

    Full text link
    In this paper we derive the general expression of a one-loop effective potential of the nonintegrable phases of Wilson lines for an SU(N) gauge theory with a massless adjoint fermion defined on the spactime manifold R1,d−3×T2R^{1,d-3}\times T^2 at finite temperature and fermion density. The Phase structure of the vacuum is presented for the case with d=4d=4 and N=2 at zero temperature. It is found that gauge symmetry is broken and restored alternately as the fermion density increases, a feature not found in the Higgs mechanism. It is the manifestation of the quantum effects of the nonintegrable phases.Comment: 17 pages, 2 figure
    • 

    corecore