103 research outputs found

    Symmetry breaking due to Dzyaloshinsky-Moriya interactions in the kagome lattice

    Full text link
    Due to the particular geometry of the kagom\'e lattice, it is shown that antisymmetric Dzyaloshinsky-Moriya interactions are allowed and induce magnetic ordering. The symmetry of the obtained low temperature magnetic phases are studied through mean field approximation and classical Mont\'e Carlo simulations. A phase diagram relating the geometry of the interaction and the ordering temperature has been derived. The order of magnitude of the anisotropies due to Dzyaloshinsky-Moriya interactions are more important than in non-frustrated magnets, which enhances its appearance in real systems. Application to the jarosites compounds is proposed. In particular, the low temperature behaviors of the Fe and Cr-based jarosites are correctly described by this model.Comment: 6 (revtex4) twocolumn pages, 6 .eps figures. Submitted to Phys. Rev.

    Aging in a topological spin glass

    Full text link
    We have examined the nonconventional spin glass phase of the 2-dimensional kagome antiferromagnet (H_3 O) Fe_3 (SO_4)_2 (OH)_6 by means of ac and dc magnetic measurements. The frequency dependence of the ac susceptibility peak is characteristic of a critical slowing down at Tg ~ 18K. At fixed temperature below Tg, aging effects are found which obey the same scaling law as in spin glasses or polymers. However, in clear contrast with conventional spin glasses, aging is remarkably insensitive to temperature changes. This particular type of dynamics is discussed in relation with theoretical predictions for highly frustrated non-disordered systems.Comment: 4 pages, 4 figure

    Comment on "Magnetic field effects on neutron diffraction in the antiferromagnetic phase of UPt3"

    Full text link
    Moreno and Sauls [Phys. Rev. B 63, 024419 (2000)] have recently tried to reanalyze earlier neutron scattering studies of the antiferromagnetic order in UPt3 with a magnetic field applied in the basal plane. In their calculation of the magnetic Bragg peak intensities, they perform an average over different magnetic structures belonging to distinct symmetry representations. This is incorrect. In addition, they have mistaken the magnetic field direction in one of the experiments, hence invalidating their conclusions concerning the experimental results.Comment: Revised 5 June 2001: Added group theory analysis and modified discussion of S and K domain

    Weak spin interactions in Mott insulating La2O2Fe2OSe2

    Get PDF
    Identifying and characterizing the parent phases of iron-based superconductors is an important step towards understanding the mechanism for their high-temperature superconductivity. We present an investigation into the magnetic interactions in the Mott insulator La2O2Fe2OSe2. This iron oxyselenide adopts a 2-k magnetic structure with low levels of magnetic frustration. This magnetic ground state is found to be dominated by next-nearest-neighbor interactions J2 and J2′ and the magnetocrystalline anisotropy of the Fe2+ site, leading to 2D-Ising-like spin S=2 fluctuations. In contrast to calculations, the values are small and confine the spin excitations below ∼25 meV. This is further corroborated by sum rules of neutron scattering. This indicates that superconductivity in related materials may derive from a weakly coupled and unfrustrated magnetic structure

    Canted antiferromagnetic order in the kagome material Sr-vesignieite

    Get PDF
    We report 51 V NMR, muon spin rotation, and zero-applied-field 63 , 65 Cu NMR measurements on powder samples of Sr-vesignieite, SrCu 3 V 2 O 8 ( OH ) 2 , a S = 1 / 2 nearly kagome Heisenberg antiferromagnet. Our results demonstrate that the ground state is a q = 0 magnetic structure with spins canting either in or out of the kagome plane, giving rise to weak ferromagnetism. We determine the size of ordered moments and the angle of canting for different possible q = 0 structures and orbital scenarios, thereby providing insight into the role of the Dzyaloshinskii-Moriya interaction in this material

    Effects of site dilution on the magnetic properties of geometrically frustrated antiferromagnets

    Full text link
    The effect of site dilution by non magnetic impurities on the susceptibility of geometrically frustrated antiferromagnets (kagome and pyrochlore lattices) is discussed in the framework of the Generalized Constant Coupling model, for both classical and quantum Heisenberg spins. For the classical diluted pyrochlore lattice, excellent agreement is found when compared with Monte Carlo data. Results for the quantum case are also presented and discussed.Comment: 5 pages, 3 figure

    Spin dynamics and disorder effects in the S = 1/2 kagome Heisenberg spin liquid phase of kapellasite

    Get PDF
    International audienceWe report 35 Cl NMR, ESR, µSR and specific heat measurements on the S = 1/2 frustrated kagomé magnet kapellasite, α−Cu3Zn(OH)6Cl2, where a gapless spin liquid phase is stabilized by a set of competing exchange interactions. Our measurements confirm the ferromagnetic character of the nearest-neighbour exchange interaction J1 and give an energy scale for the competing interactions |J| ∼ 10 K. The study of the temperature-dependent ESR lineshift reveals a moderate symmetric exchange anisotropy term D, with |D/J| ∼ 3 %. These findings validate a posteriori the use of the J1 − J2 − J d Heisenberg model to describe the magnetic properties of kapellasite [Bernu et al., Phys. Rev. B 87, 155107 (2013)]. We further confirm that the main deviation from this model is the severe random depletion of the magnetic kagomé lattice by 27%, due to Cu/Zn site mixing, and specifically address the effect of this disorder by 35 Cl NMR, performed on an oriented polycrystalline sample. Surprisingly, while being very sensitive to local structural deformations, our NMR measurements demonstrate that the system remains homogeneous with a unique spin susceptibility at high temperature, despite a variety of magnetic environments. Unconventional spin dynamics is further revealed by NMR and µSR in the low-T , correlated, spin liquid regime, where a broad distribution of spin-lattice relaxation times is observed. We ascribe this to the presence of local low energy modes

    Aging and memory effects in beta-hydrochinone-clathrate

    Full text link
    The out-of-equilibrium low-frequency complex susceptibility of the orientational glass methanol(73%)-beta-hydrochinone-clathrate is studied using temperature-stop protocols in aging experiments . Although the material does not have a sharp glass transition aging effects including rejuvenation and memory are found at low temperatures. However, they turn out to be much weaker, however, than in conventional magnetic spin glasses.Comment: 5 pages RevTeX, 6 eps-figures include

    Spin dynamics and disorder effects in the S = 1/2 kagome Heisenberg spin liquid phase of kapellasite

    Get PDF
    International audienceWe report 35 Cl NMR, ESR, µSR and specific heat measurements on the S = 1/2 frustrated kagomé magnet kapellasite, α−Cu3Zn(OH)6Cl2, where a gapless spin liquid phase is stabilized by a set of competing exchange interactions. Our measurements confirm the ferromagnetic character of the nearest-neighbour exchange interaction J1 and give an energy scale for the competing interactions |J| ∼ 10 K. The study of the temperature-dependent ESR lineshift reveals a moderate symmetric exchange anisotropy term D, with |D/J| ∼ 3 %. These findings validate a posteriori the use of the J1 − J2 − J d Heisenberg model to describe the magnetic properties of kapellasite [Bernu et al., Phys. Rev. B 87, 155107 (2013)]. We further confirm that the main deviation from this model is the severe random depletion of the magnetic kagomé lattice by 27%, due to Cu/Zn site mixing, and specifically address the effect of this disorder by 35 Cl NMR, performed on an oriented polycrystalline sample. Surprisingly, while being very sensitive to local structural deformations, our NMR measurements demonstrate that the system remains homogeneous with a unique spin susceptibility at high temperature, despite a variety of magnetic environments. Unconventional spin dynamics is further revealed by NMR and µSR in the low-T , correlated, spin liquid regime, where a broad distribution of spin-lattice relaxation times is observed. We ascribe this to the presence of local low energy modes

    Susceptibility and dilution effects of the kagome bi-layer geometrically frustrated network. A Ga-NMR study of SrCr_(9p)Ga_(12-9p)O_(19)

    Full text link
    We present an extensive gallium NMR study of the geometrically frustrated kagome bi-layer compound SrCr_(9p)Ga_(12-9p)O_(19) (Cr^3+, S=3/2) over a broad Cr-concentration range (.72<p<.95). This allows us to probe locally the kagome bi-layer susceptibility and separate the intrinsic properties due to the geometric frustration from those related to the site dilution. Our major findings are: 1) The intrinsic kagome bi-layer susceptibility exhibits a maximum in temperature at 40-50 K and is robust to a dilution as high as ~20%. The maximum reveals the development of short range antiferromagnetic correlations; 2) At low-T, a highly dynamical state induces a strong wipe-out of the NMR intensity, regardless of dilution; 3) The low-T upturn observed in the macroscopic susceptibility is associated to paramagnetic defects which stem from the dilution of the kagome bi-layer. The low-T analysis of the NMR lineshape suggests that the defect can be associated with a staggered spin-response to the vacancies on the kagome bi-layer. This, altogether with the maximum in the kagome bi-layer susceptibility, is very similar to what is observed in most low-dimensional antiferromagnetic correlated systems; 4) The spin glass-like freezing observed at T_g=2-4 K is not driven by the dilution-induced defects.Comment: 19 pages, 19 figures, revised version resubmitted to PRB Minor modifications: Fig.11 and discussion in Sec.V on the NMR shif
    corecore