27 research outputs found

    A Bayesian analysis of pentaquark signals from CLAS data

    Get PDF
    We examine the results of two measurements by the CLAS collaboration, one of which claimed evidence for a Θ+\Theta^{+} pentaquark, whilst the other found no such evidence. The unique feature of these two experiments was that they were performed with the same experimental setup. Using a Bayesian analysis we find that the results of the two experiments are in fact compatible with each other, but that the first measurement did not contain sufficient information to determine unambiguously the existence of a Θ+\Theta^{+}. Further, we suggest a means by which the existence of a new candidate particle can be tested in a rigorous manner.Comment: 5 pages, 3 figure

    First measurement of direct f0(980)f_0(980) photoproduction on the proton

    Get PDF
    We report on the results of the first measurement of exclusive f0(980)f_0(980) meson photoproduction on protons for Eγ=3.03.8E_\gamma=3.0 - 3.8 GeV and t=0.41.0-t = 0.4-1.0 GeV2^2. Data were collected with the CLAS detector at the Thomas Jefferson National Accelerator Facility. The resonance was detected via its decay in the π+π\pi^+ \pi^- channel by performing a partial wave analysis of the reaction γppπ+π\gamma p \to p \pi^+ \pi^-. Clear evidence of the f0(980)f_0(980) meson was found in the interference between PP and SS waves at Mπ+π1M_{\pi^+ \pi^-}\sim 1 GeV. The SS-wave differential cross section integrated in the mass range of the f0(980)f_0(980) was found to be a factor of 50 smaller than the cross section for the ρ\rho meson. This is the first time the f0(980)f_0(980) meson has been measured in a photoproduction experiment

    Deeply Virtual Compton Scattering Beam-Spin Asymmetries

    Get PDF
    The beam spin asymmetries in the hard exclusive electroproduction of photons on the proton (ep -> epg) were measured over a wide kinematic range and with high statistical accuracy. These asymmetries result from the interference of the Bethe-Heitler process and of deeply virtual Compton scattering. Over the whole kinematic range (x_B from 0.11 to 0.58, Q^2 from 1 to 4.8 GeV^2, -t from 0.09 to 1.8 GeV^2), the azimuthal dependence of the asymmetries is compatible with expectations from leading-twist dominance, A = a*sin(phi)/[1+c*cos(phi)]. This extensive set of data can thus be used to constrain significantly the generalized parton distributions of the nucleon in the valence quark sector.Comment: 1 tex file (6 pages), 4 (eps) figure

    Three-dimensional geological-geophysical lithosphere model of the central part of the Karelian craton

    No full text
    On the base of analysis and generalization of total available geological-geophysical information accumulated during forty years passed a complex of geophysical models of the earth’s crust has been obtained, which gives up-to-date idea on deep structure of the central part of the Karelian craton. The plotted seismic 3D density and magnetic models define more exactly our notions on stratification of the earth’s crust, the behavior of geophysical boundaries including the crust-mantle one. Complex interpretation of potential fields based on seismic model of the earth’s crust of the region taking into account petro-physical and geological data, made possible to estimate special features of layered-blocky structure of the region and of structural correlation of sub-longitudinal suture (the fragment of Ladoga-Pechenga zone of multiple activization) in tectonic division and its relation to deep magnetic sources

    First radioactive beams at ACCULINNA-2 facility and first proposed experiment

    No full text
    New fragment separator ACCULINNA-2 was installed at the primary beam line of the U-400M cyclotron in 2016. Recently, first radioactive ion beams were obtained. The design parameters of new facility were experimentally confirmed. Intensity, purity and transverse profile of several secondary beams at the final focal plane were studied. The intensities obtained for the secondary beams of 14B, 12Be, 9;11Li, 6;8He in the fragmentation reaction 15N (49.7 AMeV) + Be (2 mm) are in average 15 times higher in comparison to the ones produced at its forerunner ACCULINNA separator. The ACCULINNA-2 separator will become a backbone facility at the FLNR for the research in the field of light exotic nuclei in the vicinity of the nuclear drip lines. The planned first experiment, aimed for the observation of the 7H nucleus at ACCULINNA-2, is outlined

    First radioactive beams at ACCULINNA-2 facility and first proposed experiment

    No full text
    New fragment separator ACCULINNA-2 was installed at the primary beam line of the U-400M cyclotron in 2016. Recently, first radioactive ion beams were obtained. The design parameters of new facility were experimentally confirmed. Intensity, purity and transverse profile of several secondary beams at the final focal plane were studied. The intensities obtained for the secondary beams of 14B, 12Be, 9;11Li, 6;8He in the fragmentation reaction 15N (49.7 AMeV) + Be (2 mm) are in average 15 times higher in comparison to the ones produced at its forerunner ACCULINNA separator. The ACCULINNA-2 separator will become a backbone facility at the FLNR for the research in the field of light exotic nuclei in the vicinity of the nuclear drip lines. The planned first experiment, aimed for the observation of the 7H nucleus at ACCULINNA-2, is outlined
    corecore