33 research outputs found

    Superconductivity Near a Quantum Critical Point in Ba(Fe,Co)2As2

    Full text link
    We will examine the possible link between spin fluctuations and the superconducting mechanism in the iron-based high temperature superconductor Ba(Fe,Co)2As2 based on NMR and high pressure transport measurements.Comment: Invited paper to m2s-IX (2009

    Dental Applications of Nanodiamonds

    Get PDF
    YesNanodiamonds (NDs) have been used in various fields of medicine such as drug delivery, tissue regeneration and gene therapy. Although there has been research carried out investigated the potential of these remarkable materials in dentistry, to date no review has been published to summarize the studies conducted. Due to their target cell specificity, small size and fluorescence they have also been found to be usefulness in dentistry. Main applications of NDs in dentistry and medicine include guided tissue regeneration, reinforcement of polymers and drug delivery to treat infections and cancers. Recent research also suggests that NDs can also be used as bioactive or antibacterial dental implant coatings. However, to date, the research conducted on their biocompatibility is limited and inconclusive. Hence, substantially more in vitro and in vivo studies are required to envisage the future of NDs in dentistry. It is hoped that in the next decade these promising materials will find a variety of uses in routine dentistry

    Precise measurements of radio-frequency magnetic susceptibility in (anti)ferromagnetic materials

    Full text link
    Dynamic magnetic susceptibility, χ\chi, was studied in several intermetallic materials exhibiting ferromagnetic, antiferromagnetic and metamagnetic transitions. Precise measurements by using a 14 MHz tunnel diode oscillator (TDO) allow detailed insight into the field and temperature dependence of χ\chi. In particular, local moment ferromagnets show a sharp peak in χ(T)\chi(T) near the Curie temperature, TcT_c. The peak amplitude decreases and shifts to higher temperatures with very small applied dc fields. Anisotropic measurements of CeVSb3_3 show that this peak is present provided the magnetic easy axis is aligned with the excitation field. In a striking contrast, small moment, itinerant ferromagnets (i.e., ZrZn2_2) show a broad maximum in χ(T)\chi(T) that responds differently to applied field. We believe that TDO measurements provide a very sensitive way to distinguish between local and itinerant moment magnetic orders. Local moment antiferromagnets do not show a peak at the N\'eel temperature, TNT_N, but only a sharp decrease of χ\chi below TNT_N due to the loss of spin-disorder scattering changing the penetration depth of the ac excitation field. Furthermore, we show that the TDO is capable of detecting changes in spin order as well as metamagnetic transitions. Finally, critical scaling of χ(T,H)\chi(T,H) in the vicinity of TCT_C is discussed in CeVSb3_3 and CeAgSb2_2

    Absence of large nanoscale electronic inhomogeneities in the Ba(Fe1-xCox)2As2 pnictide

    Full text link
    75As NMR and susceptiblity were measured in a Ba(Fe1-xCox)2As2 single crystal for x=6% for various field H values and orientations. The sharpness of the superconducting and magnetic transitions demonstrates a homogeneity of the Co doping x better than +-0.25%. On the nanometer scale, the paramagnetic part of the NMR spectra is found very anisotropic and very narrow for H//ab which allows to rule out the interpretation of Ref.[6] in terms of strong Co induced electronic inhomogeneities. We propose that a distribution of hyperfine couplings and chemical shifts due to the Co effect on its nearest As explains the observed linewidths and relaxations. All these measurements show that Co substitution induces a very homogeneous electronic doping in BaFe2As2, from nano to micrometer lengthscales, on the contrary to the K doping.Comment: 6 pages, 4 figure

    Striped antiferromagnetic order and electronic properties of stoichiometric LiFeAs from first-principles calculations

    Full text link
    We investigate the structural, electronic, and magnetic properties of stoichiometric LiFeAs by using state-of-the-arts first-principles method. We find the magnetic ground-state by comparing the total energies among all the possible magnetic orders. Our calculated internal positions of Li and As are in good agreement with experiment. Our results show that stoichiometric LiFeAs has almost the same striped antiferromagnetic spin order as other FeAs-based parent compounds and tetragonal FeSe do, and the experimental fact that no magnetic phase transition has been observed at finite temperature is attributed to the tiny inter-layer spin coupling

    Muon-spin rotation and magnetization studies of chemical and hydrostatic pressure effects in EuFe_{2}(As_{1-x}P_{x})_{2}

    Full text link
    The magnetic phase diagram of EuFe2_{2}(As1x_{1-x}Px_{x})2_{2} was investigated by means of magnetization and muon-spin rotation studies as a function of chemical (isovalent substitution of As by P) and hydrostatic pressure. The magnetic phase diagrams of the magnetic ordering of the Eu and Fe spins with respect to P content and hydrostatic pressure are determined and discussed. The present investigations reveal that the magnetic coupling between the Eu and the Fe sublattices strongly depends on chemical and hydrostatic pressure. It is found that chemical and hydrostatic pressure have a similar effect on the Eu and Fe magnetic order.Comment: 11 pages, 10 figure

    Multi-gap superconductivity in a BaFe1.84Co0.16As2 film from optical measurements at terahertz frequencies

    Full text link
    We measured the THz reflectance properties of a high quality epitaxial thin film of the Fe-based superconductor BaFe1.84_{1.84}Co0.16_{0.16}As2_2 with Tc_c=22.5 K. The film was grown by pulsed laser deposition on a DyScO3_3 substrate with an epitaxial SrTiO3_3 intermediate layer. The measured RS/RNR_S/R_N spectrum, i.e. the reflectivity ratio between the superconducting and normal state reflectance, provides clear evidence of a superconducting gap ΔA\Delta_A close to 15 cm1^{-1}. A detailed data analysis shows that a two-band, two-gap model is absolutely necessary to obtain a good description of the measured RS/RNR_S/R_N spectrum. The low-energy ΔA\Delta_A gap results to be well determined (ΔA\Delta_A=15.5±\pm0.5 cm1^{-1}), while the value of the high-energy gap ΔB\Delta_B is more uncertain (ΔB\Delta_B=55±\pm7 cm1^{-1}). Our results provide evidence of a nodeless isotropic double-gap scenario, with the presence of two optical gaps corresponding to 2Δ/kTc\Delta/kT_c values close to 2 and 7.Comment: Published Versio

    Physical property characterization of single step synthesized NdFeAsO0.80F0.20 bulk 50K superconductor

    Full text link
    We report an easy single step synthesis route of title compound NdFeAsO0.80F0.20 superconductor having bulk superconductivity below 50 K. The title compound is synthesized via solid-state reaction route by encapsulation in an evacuated (10-3 Torr) quartz tube. Rietveld analysis of powder X-ray diffraction data shows that compound crystallized in tetragonal structure with space group P4/nmm. R(T)H measurements showed superconductivity with Tc (R=0) at 48 K and a very high upper critical field (Hc2) of up to 345 Tesla. Magnetic measurements exhibited bulk superconductivity in terms of diamagnetic onset below 50 K. The lower critical field (Hc1) is around 1000 Oe at 5 K. In normal state i.e., above 60 K, the compound exhibited purely paramagnetic behavior and thus ruling out the presence of any ordered FeOx impurity in the matrix. In specific heat measurements a jump is observed in the vicinity of superconducting transition (Tc) along with an upturn at below T=4 K due to the AFM ordering of Nd+3 ions in the system. The Thermo-electric power (TEP) is negative down to Tc, thus indicating dominant carriers to be of n-type in NdFeAsO0.80F0.20 superconductor. The granularity of the bulk superconducting NdFeAsO0.8F0.2 sample is investigated and the intra and inter grain contributions have been individuated by looking at various amplitude and frequencies of the applied AC drive magnetic field.Comment: 26pages text + Figures: comments/suggestions welcome ([email protected] & http://www.freewebs.com/vpsawana
    corecore