462 research outputs found
Dual Isomonodromic Deformations and Moment Maps to Loop Algebras
The Hamiltonian structure of the monodromy preserving deformation equations
of Jimbo {\it et al } is explained in terms of parameter dependent pairs of
moment maps from a symplectic vector space to the dual spaces of two different
loop algebras. The nonautonomous Hamiltonian systems generating the
deformations are obtained by pulling back spectral invariants on Poisson
subspaces consisting of elements that are rational in the loop parameter and
identifying the deformation parameters with those determining the moment maps.
This construction is shown to lead to ``dual'' pairs of matrix differential
operators whose monodromy is preserved under the same family of deformations.
As illustrative examples, involving discrete and continuous reductions, a
higher rank generalization of the Hamiltonian equations governing the
correlation functions for an impenetrable Bose gas is obtained, as well as dual
pairs of isomonodromy representations for the equations of the Painleve
transcendents and .Comment: preprint CRM-1844 (1993), 28 pgs. (Corrected date and abstract.
I=3/2 Scattering in the Nonrelativisitic Quark Potential Model
We study elastic scattering to Born order using
nonrelativistic quark wavefunctions in a constituent-exchange model. This
channel is ideal for the study of nonresonant meson-meson scattering amplitudes
since s-channel resonances do not contribute significantly. Standard quark
model parameters yield good agreement with the measured S- and P-wave phase
shifts and with PCAC calculations of the scattering length. The P-wave phase
shift is especially interesting because it is nonzero solely due to
symmetry breaking effects, and is found to be in good agreement with experiment
given conventional values for the strange and nonstrange constituent quark
masses.Comment: 12 pages + 2 postscript figures, Revtex, MIT-CTP-210
Discrete Breathers in Two-Dimensional Anisotropic Nonlinear Schrodinger lattices
We study the structure and stability of discrete breathers (both pinned and
mobile) in two-dimensional nonlinear anisotropic Schrodinger lattices. Starting
from a set of identical one-dimensional systems we develop the continuation of
the localized pulses from the weakly coupled regime (strongly anisotropic) to
the homogeneous one (isotropic). Mobile discrete breathers are seen to be a
superposition of a localized mobile core and an extended background of
two-dimensional nonlinear plane waves. This structure is in agreement with
previous results on onedimensional breather mobility. The study of the
stability of both pinned and mobile solutions is performed using standard
Floquet analysis. Regimes of quasi-collapse are found for both types of
solutions, while another kind of instability (responsible for the discrete
breather fission) is found for mobile solutions. The development of such
instabilities is studied, examining typical trajectories on the unstable
nonlinear manifold.Comment: 13 pages, 9 figure
Nonextensivity of the cyclic Lattice Lotka Volterra model
We numerically show that the Lattice Lotka-Volterra model, when realized on a
square lattice support, gives rise to a {\it finite} production, per unit time,
of the nonextensive entropy . This finiteness only occurs for for the growth mode
(growing droplet), and for for the one (growing stripe). This
strong evidence of nonextensivity is consistent with the spontaneous emergence
of local domains of identical particles with fractal boundaries and competing
interactions. Such direct evidence is for the first time exhibited for a
many-body system which, at the mean field level, is conservative.Comment: Latex, 6 pages, 5 figure
On non-local variational problems with lack of compactness related to non-linear optics
We give a simple proof of existence of solutions of the dispersion manage-
ment and diffraction management equations for zero average dispersion,
respectively diffraction. These solutions are found as maximizers of non-linear
and non-local vari- ational problems which are invariant under a large
non-compact group. Our proof of existence of maximizer is rather direct and
avoids the use of Lions' concentration compactness argument or Ekeland's
variational principle.Comment: 30 page
Effective Lagrangian for strongly coupled domain wall fermions
We derive the effective Lagrangian for mesons in lattice gauge theory with
domain-wall fermions in the strong-coupling and large-N_c limits. We use the
formalism of supergroups to deal with the Pauli-Villars fields, needed to
regulate the contributions of the heavy fermions. We calculate the spectrum of
pseudo-Goldstone bosons and show that domain wall fermions are doubled and
massive in this regime. Since we take the extent and lattice spacing of the
fifth dimension to infinity and zero respectively, our conclusions apply also
to overlap fermions.Comment: 26 pp. RevTeX and 3 figures; corrected error in symmetry breaking
scheme and added comments to discussio
Observation of exclusive DVCS in polarized electron beam asymmetry measurements
We report the first results of the beam spin asymmetry measured in the
reaction e + p -> e + p + gamma at a beam energy of 4.25 GeV. A large asymmetry
with a sin(phi) modulation is observed, as predicted for the interference term
of Deeply Virtual Compton Scattering and the Bethe-Heitler process. The
amplitude of this modulation is alpha = 0.202 +/- 0.028. In leading-order and
leading-twist pQCD, the alpha is directly proportional to the imaginary part of
the DVCS amplitude.Comment: 6 pages, 5 figure
Signatures for short-range correlations in {16}O, observed in the reaction {16}O(e,e'pp){14}C.
The reaction O-16(e,e'pp)C-14 has been studied at a transferred four-momentum (omega,\q\) = (210 MeV, 300 MeV/c). The differential cross sections for the transitions to the ground state and the lowest excited states in C-14 were determined as a function of the momentum of the recoiling C-14 nucleus and the angle between the momentum of the proton emitted in the forward direction and the momentum transfer q. A comparison of the data to the results of calculations, performed with a microscopic model, shows clear signatures for short-range correlations in the O-16 ground state
An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics
For a decade, The Cancer Genome Atlas (TCGA) program collected clinicopathologic annotation data along with multi-platform molecular profiles of more than 11,000 human tumors across 33 different cancer types. TCGA clinical data contain key features representing the democratized nature of the data collection process. To ensure proper use of this large clinical dataset associated with genomic features, we developed a standardized dataset named the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR), which includes four major clinical outcome endpoints. In addition to detailing major challenges and statistical limitations encountered during the effort of integrating the acquired clinical data, we present a summary that includes endpoint usage recommendations for each cancer type. These TCGA-CDR findings appear to be consistent with cancer genomics studies independent of the TCGA effort and provide opportunities for investigating cancer biology using clinical correlates at an unprecedented scale. Analysis of clinicopathologic annotations for over 11,000 cancer patients in the TCGA program leads to the generation of TCGA Clinical Data Resource, which provides recommendations of clinical outcome endpoint usage for 33 cancer types
Investigation of the Exclusive 3He(e,e'pp)n Reaction
Cross sections for the 3He(e,e'pp)n reaction were measured over a wide range
of energy and three- momentum transfer. At a momentum transfer q=375 MeV/c,
data were taken at transferred energies omega ranging from 170 to 290 MeV. At
omega=220 MeV, measurements were performed at three q values (305, 375, and 445
MeV/c). The results are presented as a function of the neutron momentum in the
final-state, as a function of the energy and momentum transfer, and as a
function of the relative momentum of the two-proton system. The data at neutron
momenta below 100 MeV/c, obtained for two values of the momentum transfer at
omega=220 MeV, are well described by the results of continuum-Faddeev
calculations. These calculations indicate that the cross section in this domain
is dominated by direct two-proton emission induced by a one-body hadronic
current. Cross section distributions determined as a function of the relative
momentum of the two protons are fairly well reproduced by continuum-Faddeev
calculations based on various realistic nucleon-nucleon potential models. At
higher neutron momentum and at higher energy transfer, deviations between data
and calculations are observed that may be due to contributions of isobar
currents.Comment: 14 pages, 1 table, 17 figure
- …
