23 research outputs found

    The use of a hybrid genetic system to study the functional relationship between prokaryotic and plant multi-enzyme fatty acid synthetase complexes

    No full text
    Fatty acid synthesis in bacteria and plants is catalysed by a multi-enzyme fatty acid synthetase complex (FAS II) which consists of separate monofunctional polypeptides. Here we present a comparative molecular genetic and biochemical study of the enoyl-ACP reductase FAS components of plant and bacterial origin. The putative bacterial enoyl-ACP reductase gene (envM) was identified on the basis of amino acid sequence similarities with the recently cloned plant enoyl-ACP reductase. Subsequently, it was unambiguously demonstrated by overexpression studies that the envM gene encodes the bacterial enoyl-ACP reductase. An anti-bacterial agent called diazaborine was shown to be a specific inhibitor of the bacterial enoyl-ACP reductase, whereas the plant enzyme was insensitive to this synthetic antibiotic. The close functional relationship between the plant and bacterial enoyl-ACP reductases was inferred from genetic complementation of an envM mutant of Escherichia coli. Ultimately, envM gene-replacement studies, facilitated by the use of diazaborine, demonstrated for the first time that a single component of the plant FAS system can functionally replace its counterpart within the bacterial multienzyme complex. Finally, lipid analysis of recombinant E. coli strains with the hybrid FAS system unexpectedly revealed that enoyl-ACP reductase catalyses a rate-limiting step in the elongation of unsaturated fatty acids

    cDNA cloning and expression of Brassica napus enoyl-acyl carrier protein reductase in Escherichia coli

    No full text
    The onset of storage lipid biosynthesis during seed development in the oilseed crop Brassica napus (rape seed) coincides with a drastic qualitative and quantitative change in fatty acid composition. During this phase of storage lipid biosynthesis, the enzyme activities of the individual components of the fatty acid synthase system increase rapidly. We describe a rapid and simple purification procedure for the plastid-localized NADH-dependent enoyl-acyl carrier protein reductase from developing B. napus seed, based on its affinity towards the acyl carrier protein (ACP). The purified protein was N-terminally sequenced and used to raise a potent antibody preparation. Immuno-screening of a seed-specific lambda gt11 cDNA expression library resulted in the isolation of enoyl-ACP reductase cDNA clones. DNA sequence analysis of an apparently full-length cDNA clone revealed that the enoyl-ACP reductase mRNA is translated into a precursor protein with a putative 73 amino acid leader sequence which is removed during the translocation of the protein through the plastid membrane. Expression studies in Escherichia coli demonstrated that the full-length cDNA clone encodes the authentic B. napus NADH-dependent enoyl-ACP reductase. Characterization of the enoyl-ACP reductase genes by Southern blotting shows that the allo-tetraploid B. napus contains two pairs of related enoyl-ACP reductase genes derived from the two distinct genes found in both its ancestors, Brassica oleracea and B. campestris. Northern blot analysis of enoyl-ACP reductase mRNA steady-state levels during seed development suggests that the increase in enzyme activity during the phase of storage lipid accumulation is regulated at the level of gene expression

    Enoyl-acyl carrier protein reductase: Characterization of a housekeeping gene involved in storage lpid synthesis in seeds of Arabidopsis and ot

    No full text
    The fatty acid synthetase (FAS) system in plants and bacteria consists of a type II FAS complex assembled from different monofunctional polypeptides catalysing the individual reactions involved in each cycle of the de novo synthesis of fatty acids. Enoyl-ACP reductase (EC 1.3.1.9) plays the determinant role in completing cycles of de novo fatty acid biosynthesis, by removing a trans-unsaturated double bond to give a saturated acyl-ACP. Genetic analyses revealed that the NADH-specific enoyl-ACP reductase (ENR) is encoded by a single gene in different plant species like Petunia hybrida and Arabidopsis thaliana, whereas the allotetraploid Nicotiana tabacum contains two enr encoding genes. This implies that enhanced expression of enr genes, e.g. during seed development, is due to a modification of the expression level of a housekeeping gene. Besides a high degree of homology observed within the exon and intron sequences of the analysed enr genes, the positions of the introns and exons were also found to be conserved. Other similarities are the presence of a large intron in the 5' untranslated leader sequence of the genes as well as a conserved 5' GC intron splice site. Experiments have been performed to analyse the functional importance of this 5' GC splice site with regard to the regulation of enr expression. Homology between the 5' flanking region of both tobacco enr genes, enr-T1 and enr-T2, appears to be limited to short stretches of conserved sequences which are frequently interrupted by insertions of different (retro) transposon-like elements in the promoter of enr-T2. By contrast, the arabidopsis enr promoter region does not show any significant homology when compared with similar regions of the tobacco enr genes

    A new seed-based assay for meiotic recombination in Arabidopsis thaliana.

    No full text
    Meiotic recombination is a fundamental biological process that plays a central role in the evolution and breeding of plants. We have developed a new seed-based assay for meiotic recombination in Arabidopsis. The assay is based on the transformation of green and red fluorescent markers expressed under a seed-specific promoter. A total of 74 T-DNA markers were isolated, sequenced and mapped both physically and genetically. Lines containing red and green markers that map 1-20 cM apart were crossed to produce tester lines with the two markers linked in cis yielding seeds that fluoresced both in red and green. We show that these lines can be used for efficient scoring of recombinant types (red only or green only fluorescing seeds) in a seed population derived from a test cross (backcross) or self-pollination. Two tester lines that were characterized during several generations of backcross and self-pollination, one in the background of ecotype Landsberg and one in the ecotype Columbia, are described. We discuss the number of plants and seeds to be scored in order to obtain reliable and reproducible crossing over rate values. This assay offers a relatively high-throughput method, with the benefit of seed markers (similar to the maize classical genetic markers) combined with the advantages of Arabidopsis. It advances the prospect to better understand the factors that affect the rate of meiotic crossover in plants and to stimulate this process for more efficient breeding and mapping. © 2005 Blackwell Publishing Ltd

    Inhibition of flower pigmentation by antisense CHS genes: promoter and minimal sequence requirements for the antisense effect

    No full text
    Introduction of a constitutive antisense full-length chalcone synthase (CHS) cDNA gene in petunia can result in an inhibition of flower pigmentation. We have evaluated some of the factors which may be important for the effectiveness of an antisense CHS gene. Antisense CHS genes encoding half-length or quarter-length RNA complementary to the 3′ half of CHS mRNA are able to affect flower pigmentation, while a gene encoding RNA complementary to the 5′ half of CHS mRNA did not show phenotypic effects in transgenic petunia plants. We demonstrate that the RNA encoded by the latter gene has a much lower average steady-state level in leaf tissue than the RNAs encoded by the other antisense gene constructs. We have compared the CaMV 35S and endogenous CHS promoter strengths and intrinsic stabilities of sense and antisense CHS RNAs. From the data we conclude that the constitutive antisense CHS genes are not likely to provide an excess of antisense RNA compared to the CHS mRNA derived from the endogenous genes. Effective inhibition of flower pigmentation is also observed when the antisense CHS gene is under control of the homologous CHS promoter. The results indicate that the mechanism of antisense inhibition cannot solely operate via RNA duplex formation between sense and antisense RNA. © 1990 Kluwer Academic Publishers

    Mutational analysis of Plant enoyl-ACP reductase in Escherichia coli

    No full text
    corecore