416 research outputs found

    A simple example of "Quantum Darwinism": Redundant information storage in many-spin environments

    Full text link
    As quantum information science approaches the goal of constructing quantum computers, understanding loss of information through decoherence becomes increasingly important. The information about a system that can be obtained from its environment can facilitate quantum control and error correction. Moreover, observers gain most of their information indirectly, by monitoring (primarily photon) environments of the "objects of interest." Exactly how this information is inscribed in the environment is essential for the emergence of "the classical" from the quantum substrate. In this paper, we examine how many-qubit (or many-spin) environments can store information about a single system. The information lost to the environment can be stored redundantly, or it can be encoded in entangled modes of the environment. We go on to show that randomly chosen states of the environment almost always encode the information so that an observer must capture a majority of the environment to deduce the system's state. Conversely, in the states produced by a typical decoherence process, information about a particular observable of the system is stored redundantly. This selective proliferation of "the fittest information" (known as Quantum Darwinism) plays a key role in choosing the preferred, effectively classical observables of macroscopic systems. The developing appreciation that the environment functions not just as a garbage dump, but as a communication channel, is extending our understanding of the environment's role in the quantum-classical transition beyond the traditional paradigm of decoherence.Comment: 21 pages, 6 figures, RevTex 4. Submitted to Foundations of Physics (Asher Peres Festschrift

    Thermodynamics with long-range interactions: from Ising models to black-holes

    Get PDF
    New methods are presented which enables one to analyze the thermodynamics of systems with long-range interactions. Generically, such systems have entropies which are non-extensive, (do not scale with the size of the system). We show how to calculate the degree of non-extensivity for such a system. We find that a system interacting with a heat reservoir is in a probability distribution of canonical ensembles. The system still possesses a parameter akin to a global temperature, which is constant throughout the substance. There is also a useful quantity which acts like a {\it local temperatures} and it varies throughout the substance. These quantities are closely related to counterparts found in general relativity. A lattice model with long-range spin-spin coupling is studied. This is compared with systems such as those encountered in general relativity, and gravitating systems with Newtonian-type interactions. A long-range lattice model is presented which can be seen as a black-hole analog. One finds that the analog's temperature and entropy have many properties which are found in black-holes. Finally, the entropy scaling behavior of a gravitating perfect fluid of constant density is calculated. For weak interactions, the entropy scales like the volume of the system. As the interactions become stronger, the entropy becomes higher near the surface of the system, and becomes more area-scaling.Comment: Corrects some typos found in published version. Title changed 22 pages, 2 figure

    A Monitor of Beam Polarization Profiles for the TRIUMF Parity Experiment

    Get PDF
    TRIUMF experiment E497 is a study of parity violation in pp scattering at an energy where the leading term in the analyzing power is expected to vanish, thus measuring a unique combination of weak-interaction flavour conserving terms. It is desired to reach a level of sensitivity of 2x10^-8 in both statistical and systematic errors. The leading systematic errors depend on transverse polarization components and, at least, the first moment of transverse polarization. A novel polarimeter that measures profiles of both transverse components of polarization as a function of position is described.Comment: 19 pages LaTeX, 10 PostScript figures. To appear in Nuclear Instruments and Methods in Physics Research, Section

    Parity Violation in Proton-Proton Scattering

    Full text link
    Measurements of parity-violating longitudinal analyzing powers (normalized asymmetries) in polarized proton-proton scattering provide a unique window on the interplay between the weak and strong interactions between and within hadrons. Several new proton-proton parity violation experiments are presently either being performed or are being prepared for execution in the near future: at TRIUMF at 221 MeV and 450 MeV and at COSY (Kernforschungsanlage Juelich) at 230 MeV and near 1.3 GeV. These experiments are intended to provide stringent constraints on the set of six effective weak meson-nucleon coupling constants, which characterize the weak interaction between hadrons in the energy domain where meson exchange models provide an appropriate description. The 221 MeV is unique in that it selects a single transition amplitude (3P2-1D2) and consequently constrains the weak meson-nucleon coupling constant h_rho{pp}. The TRIUMF 221 MeV proton-proton parity violation experiment is described in some detail. A preliminary result for the longitudinal analyzing power is Az = (1.1 +/-0.4 +/-0.4) x 10^-7. Further proton-proton parity violation experiments are commented on. The anomaly at 6 GeV/c requires that a new multi-GeV proton-proton parity violation experiment be performed.Comment: 13 Pages LaTeX, 5 PostScript figures, uses espcrc1.sty. Invited talk at QULEN97, International Conference on Quark Lepton Nuclear Physics -- Nonperturbative QCD Hadron Physics & Electroweak Nuclear Processes --, Osaka, Japan May 20--23, 199

    Nab: Measurement Principles, Apparatus and Uncertainties

    Get PDF
    The Nab collaboration will perform a precise measurement of 'a', the electron-neutrino correlation parameter, and 'b', the Fierz interference term in neutron beta decay, in the Fundamental Neutron Physics Beamline at the SNS, using a novel electric/magnetic field spectrometer and detector design. The experiment is aiming at the 10^{-3} accuracy level in (Delta a)/a, and will provide an independent measurement of lambda = G_A/G_V, the ratio of axial-vector to vector coupling constants of the nucleon. Nab also plans to perform the first ever measurement of 'b' in neutron decay, which will provide an independent limit on the tensor weak coupling.Comment: 12 pages, 6 figures, 1 table, talk presented at the International Workshop on Particle Physics with Slow Neutrons, Grenoble, 29-31 May 2008; to appear in Nucl. Instrum. Meth. in Physics Research

    Parity Violation in Proton-Proton Scattering at 221 MeV

    Full text link
    TRIUMF experiment 497 has measured the parity violating longitudinal analyzing power, A_z, in pp elastic scattering at 221.3 MeV incident proton energy. This paper includes details of the corrections, some of magnitude comparable to A_z itself, required to arrive at the final result. The largest correction was for the effects of first moments of transverse polarization. The addition of the result, A_z=(0.84 \pm 0.29 (stat.) \pm 0.17 (syst.)) \times 10^{-7}, to the pp parity violation experimental data base greatly improves the experimental constraints on the weak meson-nucleon coupling constants h^{pp}_\rho and h^{pp}_\omega, and has implications for the interpretation of electron parity violation experiments.Comment: 17 pages RevTeX, 14 PostScript figures. Revised version with additions suggested by Phys. Rev.

    Sedentary time and markers of inflammation in people with newly diagnosed type 2 diabetes

    Get PDF
    AbstractBackground and aimsWe investigated whether objectively measured sedentary time was associated with markers of inflammation in adults with newly diagnosed type 2 diabetes.Methods and resultsWe studied 285 adults (184 men, 101 women, mean age 59.0 ± 9.7) who had been recruited to the Early ACTivity in Diabetes (Early ACTID) randomised controlled trial. C-reactive protein (CRP), adiponectin, soluble intracellular adhesion molecule-1 (sICAM-1), interleukin-6 (IL-6), and accelerometer-determined sedentary time and moderate-vigorous physical activity (MVPA) were measured at baseline and after six-months. Linear regression analysis was used to investigate the independent cross-sectional and longitudinal associations of sedentary time with markers of inflammation.At baseline, associations between sedentary time and IL-6 were observed in men and women, an association that was attenuated following adjustment for waist circumference. After 6 months of follow-up, sedentary time was reduced by 0.4 ± 1.2 h per day in women, with the change in sedentary time predicting CRP at follow-up. Every hour decrease in sedentary time between baseline and six-months was associated with 24% (1, 48) lower CRP. No changes in sedentary time between baseline and 6 months were seen in men.ConclusionsHigher sedentary time is associated with IL-6 in men and women with type 2 diabetes, and reducing sedentary time is associated with improved levels of CRP in women. Interventions to reduce sedentary time may help to reduce inflammation in women with type 2 diabetes

    Particle creation, classicality and related issues in quantum field theory: II. Examples from field theory

    Full text link
    We adopt the general formalism, which was developed in Paper I (arXiv:0708.1233) to analyze the evolution of a quantized time-dependent oscillator, to address several questions in the context of quantum field theory in time dependent external backgrounds. In particular, we study the question of emergence of classicality in terms of the phase space evolution and its relation to particle production, and clarify some conceptual issues. We consider a quantized scalar field evolving in a constant electric field and in FRW spacetimes which illustrate the two extreme cases of late time adiabatic and highly non-adiabatic evolution. Using the time-dependent generalizations of various quantities like particle number density, effective Lagrangian etc. introduced in Paper I, we contrast the evolution in these two limits bringing out key differences between the Schwinger effect and evolution in the de Sitter background. Further, our examples suggest that the notion of classicality is multifaceted and any one single criterion may not have universal applicability. For example, the peaking of the phase space Wigner distribution on the classical trajectory \emph{alone} does not imply transition to classical behavior. An analysis of the behavior of the \emph{classicality parameter}, which was introduced in Paper I, leads to the conclusion that strong particle production is necessary for the quantum state to become highly correlated in phase space at late times.Comment: RevTeX 4; 27 pages; 18 figures; second of a series of two papers, the first being arXiv:0708.1233 [gr-qc]; high resolution figures available from the authors on reques

    Particle creation, classicality and related issues in quantum field theory: I. Formalism and toy models

    Full text link
    The quantum theory of a harmonic oscillator with a time dependent frequency arises in several important physical problems, especially in the study of quantum field theory in an external background. While the mathematics of this system is straightforward, several conceptual issues arise in such a study. We present a general formalism to address some of the conceptual issues like the emergence of classicality, definition of particle content, back reaction etc. In particular, we parametrize the wave function in terms of a complex number (which we call excitation parameter) and express all physically relevant quantities in terms it. Many of the notions -- like those of particle number density, effective Lagrangian etc., which are usually defined using asymptotic in-out states -- are generalized as time-dependent concepts and we show that these generalized definitions lead to useful and reasonable results. Having developed the general formalism we apply it to several examples. Exact analytic expressions are found for a particular toy model and approximate analytic solutions are obtained in the extreme cases of adiabatic and highly non-adiabatic evolution. We then work out the exact results numerically for a variety of models and compare them with the analytic results and approximations. The formalism is useful in addressing the question of emergence of classicality of the quantum state, its relation to particle production and to clarify several conceptual issues related to this. In Paper II (arXiv:0708.1237), which is a sequel to this, the formalism will be applied to analyze the corresponding issues in the context of quantum field theory in background cosmological models and electric fields.Comment: RevTeX 4; 32 pages; 28 figures; first of a series of two papers, the second being arXiv:0708.1237 [gr-qc]; high resolution figures available from the authors on reques

    Magnetic Fields in the Milky Way

    Full text link
    This chapter presents a review of observational studies to determine the magnetic field in the Milky Way, both in the disk and in the halo, focused on recent developments and on magnetic fields in the diffuse interstellar medium. I discuss some terminology which is confusingly or inconsistently used and try to summarize current status of our knowledge on magnetic field configurations and strengths in the Milky Way. Although many open questions still exist, more and more conclusions can be drawn on the large-scale and small-scale components of the Galactic magnetic field. The chapter is concluded with a brief outlook to observational projects in the near future.Comment: 22 pages, 5 figures, to appear in "Magnetic Fields in Diffuse Media", eds. E.M. de Gouveia Dal Pino and A. Lazaria
    • …
    corecore