264 research outputs found
Angiomyofibroblastoma: Imaging and histopathology of a rare benign mesenchymal tumor
Angiomyofibroblastomas, aggressive angiomyxomas and cellular angiofibromas are rare mesenchymal tumours with many overlapping radiological, histopathological and immunohistochemical features. Amongst these tumours angiomyofibroblastoma is relatively benign mesenchymal tumour with very low chances of recurrence. It is clinically confused with bartholin gland cyst due to its well demarcated and smooth appearance. Due to overlapping histopathological features its very difficult even for experienced pathologists to differentiate between these mesenchymal tumours. Earlier desmin reactivity was thought to be specific for angiomyofibroblastoma but recently many aggressive angiomyxomas have also been found to be positive for desmin. Ultrasound, computed tomography and magnetic resonance imaging may be useful in diagnosis and ruling out more sinister malignancies. A well demarcated lesion with characteristic histopathological appearance of alternating hypo and hypercellular edematous regions with abundant blood vessels and stromal cells with dispersed chromatin is usually seen in angiomyofibroblastoma. Immunohistochemistry may further help in diagnosis. We here report a case of vaginal angiomyofibroblastoma. The diagnosis was made on the basis of imaging and was confirmed by histopathology and immunohistochemistry.Keywords: Histopathology and immunohistochemistry; imaging; mesenchymal tumours; vaginal angiomyofibroblastom
Percolation and epidemics in a two-dimensional small world
Percolation on two-dimensional small-world networks has been proposed as a
model for the spread of plant diseases. In this paper we give an analytic
solution of this model using a combination of generating function methods and
high-order series expansion. Our solution gives accurate predictions for
quantities such as the position of the percolation threshold and the typical
size of disease outbreaks as a function of the density of "shortcuts" in the
small-world network. Our results agree with scaling hypotheses and numerical
simulations for the same model.Comment: 7 pages, 3 figures, 2 table
Expressed Protein Selenoester Ligation
Herein, we describe the development and application of a novel expressed protein selenoester ligation (EPSL) methodology for the one-pot semi-synthesis of modified proteins. EPSL harnesses the rapid kinetics of ligation reactions between modified synthetic selenopeptides and protein aryl selenoesters (generated from expressed intein fusion precursors) followed by in situ chemoselective deselenization to afford target proteins at concentrations that preclude the use of traditional ligation methods. The utility of the EPSL technology is showcased through the efficient semi-synthesis of ubiquitinated polypeptides, lipidated analogues of the membrane-associated GTPase YPT6, and site-specifically phosphorylated variants of the oligomeric chaperone protein Hsp27 at high dilution.Sameer S. Kulkarni, Emma E. Watson, Joshua W. C. Maxwell, Gerhard Niederacher, Jason Johansen-Leete, Susanne Huhmann, Somnath Mukherjee, Alexander R. Norman, Julia Kriegesmann, Christian F. W. Becker, and Richard J. Payn
Gamma-Ray Bursts: The Underlying Model
A pedagogical derivation is presented of the ``fireball'' model of gamma-ray
bursts, according to which the observable effects are due to the dissipation of
the kinetic energy of a relativistically expanding wind, a ``fireball.'' The
main open questions are emphasized, and key afterglow observations, that
provide support for this model, are briefly discussed. The relativistic outflow
is, most likely, driven by the accretion of a fraction of a solar mass onto a
newly born (few) solar mass black hole. The observed radiation is produced once
the plasma has expanded to a scale much larger than that of the underlying
``engine,'' and is therefore largely independent of the details of the
progenitor, whose gravitational collapse leads to fireball formation. Several
progenitor scenarios, and the prospects for discrimination among them using
future observations, are discussed. The production in gamma- ray burst
fireballs of high energy protons and neutrinos, and the implications of burst
neutrino detection by kilometer-scale telescopes under construction, are
briefly discussed.Comment: In "Supernovae and Gamma Ray Bursters", ed. K. W. Weiler, Lecture
Notes in Physics, Springer-Verlag (in press); 26 pages, 2 figure
Black Hole Spin via Continuum Fitting and the Role of Spin in Powering Transient Jets
The spins of ten stellar black holes have been measured using the
continuum-fitting method. These black holes are located in two distinct classes
of X-ray binary systems, one that is persistently X-ray bright and another that
is transient. Both the persistent and transient black holes remain for long
periods in a state where their spectra are dominated by a thermal accretion
disk component. The spin of a black hole of known mass and distance can be
measured by fitting this thermal continuum spectrum to the thin-disk model of
Novikov and Thorne; the key fit parameter is the radius of the inner edge of
the black hole's accretion disk. Strong observational and theoretical evidence
links the inner-disk radius to the radius of the innermost stable circular
orbit, which is trivially related to the dimensionless spin parameter a_* of
the black hole (|a_*| < 1). The ten spins that have so far been measured by
this continuum-fitting method range widely from a_* \approx 0 to a_* > 0.95.
The robustness of the method is demonstrated by the dozens or hundreds of
independent and consistent measurements of spin that have been obtained for
several black holes, and through careful consideration of many sources of
systematic error. Among the results discussed is a dichotomy between the
transient and persistent black holes; the latter have higher spins and larger
masses. Also discussed is recently discovered evidence in the transient sources
for a correlation between the power of ballistic jets and black hole spin.Comment: 30 pages. Accepted for publication in Space Science Reviews. Also to
appear in hard cover in the Space Sciences Series of ISSI "The Physics of
Accretion onto Black Holes" (Springer Publisher). Changes to Sections 5.2,
6.1 and 7.4. Section 7.4 responds to Russell et al. 2013 (MNRAS, 431, 405)
who find no evidence for a correlation between the power of ballistic jets
and black hole spi
Antiulcer, wound healing and hepatoprotective activities of the seaweeds Gracilaria crassa, Turbinaria ornata and Laurencia papillosa from the southeast coast of India
Seaweeds have bioactive compounds of interest in the pharmaceutical industry. In India, seaweeds are used exclusively for phycocolloids production and have not yet received consideration as a dietary supplement. So, it has become imperative to explore the biomedical potential of seaweeds and promote their utilization as a functional food. The seaweeds Turbinaria ornata, Gracillaria crassa and Laurencia papillosa, collected from the Tuticorin coast of the Southeast coast of India and selected based on preliminary screening, were extracted with acetone and evaluated for antiulcer, wound healing and hepatoprotective activities. L. papillosa showed the highest level of gastric protection activity (81%) at 200 mg/kg, comparable to the standard drug ranitidine (90%). G. crassa followed with 76%. G. crassa and L. papillosa, showed marked wound-healing activity. G. crassa at 200 mg/kg, showed a marked effect on the serum marker enzymes indicating prominent hepatoprotective activity. The noteworthy wound-healing and hepato-protective properties of G. crassa besides anti-ulcer activity next to L. papillosa were indicative of its potential for further consideration
Measurement report: Understanding the seasonal cycle of Southern Ocean aerosols
Published: 29 March 2023The remoteness and extreme conditions of the Southern Ocean and Antarctic region have meant that observations in this region are rare, and typically restricted to summertime during research or resupply voyages. Observations of aerosols outside of the summer season are typically limited to long-term stations, such as Kennaook / Cape Grim (KCG; 40.7ââS, 144.7ââE), which is situated in the northern latitudes of the Southern Ocean, and Antarctic research stations, such as the Japanese operated Syowa (SYO; 69.0ââS, 39.6ââE). Measurements in the midlatitudes of the Southern Ocean are important, particularly in light of recent observations that highlighted the latitudinal gradient that exists across the region in summertime. Here we present 2 years (March 2016âMarch 2018) of observations from Macquarie Island (MQI; 54.5ââS, 159.0ââE) of aerosol (condensation nuclei larger than 10ânm, CN10) and cloud condensation nuclei (CCN at various supersaturations) concentrations. This important multi-year data set is characterised, and its features are compared with the long-term data sets from KCG and SYO together with those from recent, regionally relevant voyages. CN10 concentrations were the highest at KCG by a factor of âŒ50â% across all non-winter seasons compared to the other two stations, which were similar (summer medians of 530, 426 and 468âcmâ3 at KCG, MQI and SYO, respectively). In wintertime, seasonal minima at KCG and MQI were similar (142 and 152âcmâ3, respectively), with SYO being distinctly lower (87âcmâ3), likely the result of the reduction in sea spray aerosol generation due to the sea ice ocean cover around the site. CN10 seasonal maxima were observed at the stations at different times of year, with KCG and MQI exhibiting January maxima and SYO having a distinct February high. Comparison of CCN0.5 data between KCG and MQI showed similar overall trends with summertime maxima and wintertime minima; however, KCG exhibited slightly (âŒ10â%) higher concentrations in summer (medians of 158 and 145âcmâ3, respectively), whereas KCG showed âŒ40â% lower concentrations than MQI in winter (medians of 57 and 92âcmâ3, respectively). Spatial and temporal trends in the data were analysed further by contrasting data to coincident observations that occurred aboard several voyages of the RSV Aurora Australis and the RV Investigator. Results from this study are important for validating and improving our models and highlight the heterogeneity of this pristine region and the need for further long-term observations that capture the seasonal cycles.Ruhi S. Humphries, Melita D. Keywood, Jason P. Ward, James Harnwell, Simon P. Alexander, Andrew R. Klekociuk, Keiichiro Hara, Ian M. McRobert, Alain Protat, Joel Alroe, Luke T. Cravigan, Branka Miljevic, Zoran D. Ristovski, Robyn Schofield, Stephen R. Wilson, Connor J. Flynn, Gourihar R. Kulkarni, Gerald G. Mace, Greg M. McFarquhar, Scott D. Chambers, Alastair G. Williams, and Alan D. Griffith
Site-selective photocatalytic functionalization of peptides and proteins at selenocysteine
The importance of modified peptides and proteins for applications in drug discovery, and for illuminating biological processes at the molecular level, is fueling a demand for efficient methods that facilitate the precise modification of these biomolecules. Herein, we describe the development of a photocatalytic method for the rapid and efficient dimerization and site-specific functionalization of peptide and protein diselenides. This methodology, dubbed the photocatalytic diselenide contraction, involves irradiation at 450ânm in the presence of an iridium photocatalyst and a phosphine and results in rapid and clean conversion of diselenides to reductively stable selenoethers. A mechanism for this photocatalytic transformation is proposed, which is supported by photoluminescence spectroscopy and density functional theory calculations. The utility of the photocatalytic diselenide contraction transformation is highlighted through the dimerization of selenopeptides, and by the generation of two families of protein conjugates via the site-selective modification of calmodulin containing the 21st amino acid selenocysteine, and the C-terminal modification of a ubiquitin diselenide.Luke J. Dowman, Sameer S. Kulkarni, Juan V. Alegre-Requena, Andrew M. Giltrap, Alexander R. Norman, Ashish Sharma, Liliana C. Gallegos, Angus S.Mackay, Adarshi P. Welegedara, Emma E. Watson, Damian van Raad, Gerhard Niederacher, Susanne Huhmann, Nicholas Proschogo, Karishma Patel, Mark Larance, Christian F. W. Becker, Joel P. Mackay, Girish Lakhwani, Thomas Huber, Robert S. Paton, Richard J. Payn
- âŠ