206 research outputs found

    Impact of the lipid-based nutrient supplements on prevention and treatment of childhood moderate undernutrition

    Get PDF
    Purpose: This review aims at assessing the effectiveness of LNS interventions for prevention and/or treatment of moderate acute malnutrition (MAM), stunting and other anthropometric indicators for undernutrition in children younger than 5 years. Methodology: Eighteen clinical trials on LNS (soybased or milk-based) supplementation in children were compared with habitual diet/control or corn-soy blend (CSB). Mean changes in height for age (HAZ), weight for age (WAZ) and weight for height z-scores (WHZ) were assessed as primary outcomes. The secondary outcomes included: weight gain, height, mid upper arm circumference (MUAC), recovery from MAM, occurrence of fever, diarrhoea and cough. Findings: The pooled estimate revealed a statistically significant increase in WAZ (weighted mean difference [WMD] =0.09; 95%CI= 0.02, 0.15; p=0.01), WHZ (WMD=0.14; 95%CI= 0.01, 0.26; p=0.000) and improved recovery from MAM (Risk Ratio [RR] = 1.37; 95%CI= 1.14, 1.65; p=0.000) in children receiving LNS compared with control or CBS. No significant effect was observed in HAZ (WMD=0.00;95%CI=-0.02,0.03: p=0.578). Children fed with milk-based LNS (RR=1.68; 95%CI=1.17, 2.39; p=0.005) were more likely to recover significantly from MAM when compared with CSB. Conclusion: Although there is evidence that LNS yield better nutritional outcomes than CSB and control, it is impossible to conclude that the milk-based LNS are superior to soy-based LNS and whether age and duration of intervention significantly affect the effectiveness of LNS on childhood undernutrition. Further research is required before these products can be recommended at scale

    Solar Neutrino Constraints on the BBN Production of Li

    Full text link
    Using the recent WMAP determination of the baryon-to-photon ratio, 10^{10} \eta = 6.14 to within a few percent, big bang nucleosynthesis (BBN) calculations can make relatively accurate predictions of the abundances of the light element isotopes which can be tested against observational abundance determinations. At this value of \eta, the Li7 abundance is predicted to be significantly higher than that observed in low metallicity halo dwarf stars. Among the possible resolutions to this discrepancy are 1) Li7 depletion in the atmosphere of stars; 2) systematic errors originating from the choice of stellar parameters - most notably the surface temperature; and 3) systematic errors in the nuclear cross sections used in the nucleosynthesis calculations. Here, we explore the last possibility, and focus on possible systematic errors in the He3(\alpha,\gamma)Be7 reaction, which is the only important Li7 production channel in BBN. The absolute value of the cross section for this key reaction is known relatively poorly both experimentally and theoretically. The agreement between the standard solar model and solar neutrino data thus provides additional constraints on variations in the cross section (S_{34}). Using the standard solar model of Bahcall, and recent solar neutrino data, we can exclude systematic S_{34} variations of the magnitude needed to resolve the BBN Li7 problem at > 95% CL. Additional laboratory data on He3(\alpha,\gamma)Be7 will sharpen our understanding of both BBN and solar neutrinos, particularly if care is taken in determining the absolute cross section and its uncertainties. Nevertheless, it already seems that this ``nuclear fix'' to the Li7 BBN problem is unlikely; other possible solutions are briefly discussed.Comment: 21 pages, 3 ps figure

    Designing a broad-spectrum integrative approach for cancer prevention and treatment

    Get PDF
    Targeted therapies and the consequent adoption of "personalized" oncology have achieved notablesuccesses in some cancers; however, significant problems remain with this approach. Many targetedtherapies are highly toxic, costs are extremely high, and most patients experience relapse after a fewdisease-free months. Relapses arise from genetic heterogeneity in tumors, which harbor therapy-resistantimmortalized cells that have adopted alternate and compensatory pathways (i.e., pathways that are notreliant upon the same mechanisms as those which have been targeted). To address these limitations, aninternational task force of 180 scientists was assembled to explore the concept of a low-toxicity "broad-spectrum" therapeutic approach that could simultaneously target many key pathways and mechanisms. Using cancer hallmark phenotypes and the tumor microenvironment to account for the various aspectsof relevant cancer biology, interdisciplinary teams reviewed each hallmark area and nominated a widerange of high-priority targets (74 in total) that could be modified to improve patient outcomes. For thesetargets, corresponding low-toxicity therapeutic approaches were then suggested, many of which werephytochemicals. Proposed actions on each target and all of the approaches were further reviewed forknown effects on other hallmark areas and the tumor microenvironment. Potential contrary or procar-cinogenic effects were found for 3.9% of the relationships between targets and hallmarks, and mixedevidence of complementary and contrary relationships was found for 7.1%. Approximately 67% of therelationships revealed potentially complementary effects, and the remainder had no known relationship. Among the approaches, 1.1% had contrary, 2.8% had mixed and 62.1% had complementary relationships. These results suggest that a broad-spectrum approach should be feasible from a safety standpoint. Thisnovel approach has potential to be relatively inexpensive, it should help us address stages and types ofcancer that lack conventional treatment, and it may reduce relapse risks. A proposed agenda for futureresearch is offered

    Proposed primary endpoints for use in clinical trials that compare treatment options for bloodstream infection in adults: a consensus definition.

    Get PDF
    Objectives To define standardised endpoints to aid the design of trials that compare antibiotic therapies for bloodstream infection (BSI). Methods Prospective studies, randomised trials or registered protocols comparing antibiotic therapies for BSI, published from 2005 to 2016, were reviewed. Consensus endpoints for BSI studies were defined using a modified Delphi process. Results Different primary and secondary endpoints were defined for pilot (small-scale studies designed to evaluate protocol design, feasibility and implementation) and definitive trials (larger-scale studies designed to test hypotheses and influence clinical practice), as well as for Staphylococcus aureus and Gram-negative BSI. For pilot studies of S. aureus BSI, a primary outcome of success at day 7 was defined by: survival, resolution of fever, stable/improved Sequential Organ Failure Assessment (SOFA) score and clearance of blood cultures, with no microbiologically-confirmed failure up to 90 days. For definitive S. aureus BSI studies, a primary outcome of success at 90 days was defined by survival and no microbiologically-confirmed failure. For pilot studies of Gram-negative BSI, a primary outcome of success at day 7 was defined by: survival, resolution of fever and symptoms related to BSI source, stable or improved SOFA score and negative blood cultures. For definitive Gram-negative BSI studies, a primary outcome of survival at 90 days supported by a secondary outcome of success at day 7 (as previously defined) was agreed. Conclusions These endpoints provide a framework to aid future trial design. Further work will be required to validate these endpoints with respect to patient-centered clinical outcomes

    Global data on earthworm abundance, biomass, diversity and corresponding environmental properties

    Get PDF
    14 p.Earthworms are an important soil taxon as ecosystem engineers, providing a variety of crucial ecosystem functions and services. Little is known about their diversity and distribution at large spatial scales, despite the availability of considerable amounts of local-scale data. Earthworm diversity data, obtained from the primary literature or provided directly by authors, were collated with information on site locations, including coordinates, habitat cover, and soil properties. Datasets were required, at a minimum, to include abundance or biomass of earthworms at a site. Where possible, site-level species lists were included, as well as the abundance and biomass of individual species and ecological groups. This global dataset contains 10,840 sites, with 184 species, from 60 countries and all continents except Antarctica. The data were obtained from 182 published articles, published between 1973 and 2017, and 17 unpublished datasets. Amalgamating data into a single global database will assist researchers in investigating and answering a wide variety of pressing questions, for example, jointly assessing aboveground and belowground biodiversity distributions and drivers of biodiversity change

    A global horizon scan of issues impacting marine and coastal biodiversity conservation

    Get PDF
    The biodiversity of marine and coastal habitats is experiencing unprecedented change. While there are well-known drivers of these changes, such as overexploitation, climate change and pollution, there are also relatively unknown emerging issues that are poorly understood or recognized that have potentially positive or negative impacts on marine and coastal ecosystems. In this inaugural Marine and Coastal Horizon Scan, we brought together 30 scientists, policymakers and practitioners with transdisciplinary expertise in marine and coastal systems to identify new issues that are likely to have a significant impact on the functioning and conservation of marine and coastal biodiversity over the next 5–10 years. Based on a modified Delphi voting process, the final 15 issues presented were distilled from a list of 75 submitted by participants at the start of the process. These issues are grouped into three categories: ecosystem impacts, for example the impact of wildfires and the effect of poleward migration on equatorial biodiversity; resource exploitation, including an increase in the trade of fish swim bladders and increased exploitation of marine collagens; and new technologies, such as soft robotics and new biodegradable products. Our early identification of these issues and their potential impacts on marine and coastal biodiversity will support scientists, conservationists, resource managers and policymakers to address the challenges facing marine ecosystems

    Narrow-band search for gravitational waves from known pulsars using the second LIGO observing run

    Get PDF
    Isolated spinning neutron stars, asymmetric with respect to their rotation axis, are expected to be sources of continuous gravitational waves. The most sensitive searches for these sources are based on accurate matched filtering techniques that assume the continuous wave to be phase locked with the pulsar beamed emission. While matched filtering maximizes the search sensitivity, a significant signal-to-noise ratio loss will happen in the case of a mismatch between the assumed and the true signal phase evolution. Narrow-band algorithms allow for a small mismatch in the frequency and spin-down values of the pulsar while coherently integrating the entire dataset. In this paper, we describe a narrow-band search using LIGO O2 data for the continuous wave emission of 33 pulsars. No evidence of a continuous wave signal is found, and upper limits on the gravitational wave amplitude over the analyzed frequency and spin-down ranges are computed for each of the targets. In this search, we surpass the spin-down limit, namely, the maximum rotational energy loss due to gravitational waves emission for some of the pulsars already present in the LIGO O1 narrow-band search, such as J1400-6325, J1813-1246, J1833-1034, J1952+3252, and for new targets such as J0940-5428 and J1747-2809. For J1400-6325, J1833-1034, and J1747-2809, this is the first time the spin-down limit is surpassed. © 2019 American Physical Society
    corecore