810 research outputs found

    Shock Waves in the Large-Scale Structure of the Universe

    Full text link
    Cosmological shock waves are induced during hierarchical formation of large-scale structure in the universe. Like most astrophysical shocks, they are collisionless, since they form in the tenuous intergalactic medium through electromagnetic viscosities. The gravitational energy released during structure formation is transferred by these shocks to the intergalactic gas as heat, cosmic-rays, turbulence, and magnetic fields. Here we briefly describe the properties and consequences of the shock waves in the context of the large-scale structure of the universe.Comment: Submitted to Astrophysics and Space Science (Special Issue for the proceedings of International Conference on HEDP/HEDLA-08). Pdf with full resolution Figure 1 can be downloaded from http://canopus.cnu.ac.kr/ryu/rk.pd

    Magnetic Fields, Relativistic Particles, and Shock Waves in Cluster Outskirts

    Full text link
    It is only now, with low-frequency radio telescopes, long exposures with high-resolution X-ray satellites and gamma-ray telescopes, that we are beginning to learn about the physics in the periphery of galaxy clusters. In the coming years, Sunyaev-Zeldovich telescopes are going to deliver further great insights into the plasma physics of these special regions in the Universe. The last years have already shown tremendous progress with detections of shocks, estimates of magnetic field strengths and constraints on the particle acceleration efficiency. X-ray observations have revealed shock fronts in cluster outskirts which have allowed inferences about the microphysical structure of shocks fronts in such extreme environments. The best indications for magnetic fields and relativistic particles in cluster outskirts come from observations of so-called radio relics, which are megaparsec-sized regions of radio emission from the edges of galaxy clusters. As these are difficult to detect due to their low surface brightness, only few of these objects are known. But they have provided unprecedented evidence for the acceleration of relativistic particles at shock fronts and the existence of muG strength fields as far out as the virial radius of clusters. In this review we summarise the observational and theoretical state of our knowledge of magnetic fields, relativistic particles and shocks in cluster outskirts.Comment: 34 pages, to be published in Space Science Review

    Search for solar axion emission from 7Li and D(p,gamma)3He nuclear decays with the CAST gamma-ray calorimeter

    Full text link
    We present the results of a search for a high-energy axion emission signal from 7Li (0.478 MeV) and D(p,gamma)3He (5.5 MeV) nuclear transitions using a low-background gamma-ray calorimeter during Phase I of the CAST experiment. These so-called "hadronic axions" could provide a solution to the long-standing strong-CP problem and can be emitted from the solar core from nuclear M1 transitions. This is the first such search for high-energy pseudoscalar bosons with couplings to nucleons conducted using a helioscope approach. No excess signal above background was found.Comment: 20 pages, 8 figures, final version to be published in JCA

    Equilibration processes in the Warm-Hot Intergalactic Medium

    Full text link
    The Warm-Hot Intergalactic Medium (WHIM) is thought to contribute about 40-50 % to the baryonic budget at the present evolution stage of the universe. The observed large scale structure is likely to be due to gravitational growth of density fluctuations in the post-inflation era. The evolving cosmic web is governed by non-linear gravitational growth of the initially weak density fluctuations in the dark energy dominated cosmology. Non-linear structure formation, accretion and merging processes, star forming and AGN activity produce gas shocks in the WHIM. Shock waves are converting a fraction of the gravitation power to thermal and non-thermal emission of baryonic/leptonic matter. They provide the most likely way to power the luminous matter in the WHIM. The plasma shocks in the WHIM are expected to be collisionless. Collisionless shocks produce a highly non-equilibrium state with anisotropic temperatures and a large differences in ion and electron temperatures. We discuss the ion and electron heating by the collisionless shocks and then review the plasma processes responsible for the Coulomb equilibration and collisional ionisation equilibrium of oxygen ions in the WHIM. MHD-turbulence produced by the strong collisionless shocks could provide a sizeable non-thermal contribution to the observed Doppler parameter of the UV line spectra of the WHIM.Comment: 13 pages, 4 figures, accepted for publication in Space Science Reviews, special issue "Clusters of galaxies: beyond the thermal view", Editor J.S. Kaastra, Chapter 8; work done by an international team at the International Space Science Institute (ISSI), Bern, organised by J.S. Kaastra, A.M. Bykov, S. Schindler & J.A.M. Bleeke

    Testing Holographic Principle from Logarithmic and Higher Order Corrections to Black Hole Entropy

    Full text link
    The holographic principle is tested by examining the logarithmic and higher order corrections to the Bekenstein-Hawking entropy of black holes. For the BTZ black hole, I find some disagreement in the principle for a holography screen at spatial infinity beyond the leading order, but a holography with the screen at the horizon does not, with an appropriate choice of a period parameter, which has been undetermined at the leading order, in Carlip's horizon-CFT approach for black hole entropy in any dimension. Its higher dimensional generalization is considered to see a universality of the parameter choice. The horizon holography from Carlip's is compared with several other realizations of a horizon holography, including induced Wess-Zumino-Witten model approaches and quantum geometry approach, but none of the these agrees with Carlip's, after clarifications of some confusions. Some challenging open questions are listed finally.Comment: To appear in JHEP. The corrections in Sec.2 with those that follow are more clearly explained. Careful distingtion between the implications of my results to AdS/CFT and to the holograhic principl

    SRAO CO Observation of 11 Supernova Remnants in l = 70 to 190 deg

    Full text link
    We present the results of 12CO J = 1-0 line observations of eleven Galactic supernova remnants (SNRs) obtained using the Seoul Radio Astronomy Observatory (SRAO) 6-m radio telescope. The observation was made as a part of the SRAO CO survey of SNRs between l = 70 and 190 deg, which is intended to identify SNRs interacting with molecular clouds. The mapping areas for the individual SNRs are determined to cover their full extent in the radio continuum. We used halfbeam grid spacing (60") for 9 SNRs and full-beam grid spacing (120") for the rest. We detected CO emission towards most of the remnants. In six SNRs, molecular clouds showed a good spatial relation with their radio morphology, although no direct evidence for the interaction was detected. Two SNRs are particularly interesting: G85.4+0.7, where there is a filamentary molecular cloud along the radio shell, and 3C434.1, where a large molecular cloud appears to block the western half of the remnant. We briefly summarize the results obtained for individual SNRs.Comment: Accepted for publication in Astrophysics & Space Science. 12 pages, 12 figures, and 3 table
    corecore