218 research outputs found
Science with the EXTraS Project: Exploring the X-ray Transient and variable Sky
The EXTraS project (Exploring the X-ray Transient and variable Sky) will
characterise the temporal behaviour of the largest ever sample of objects in
the soft X-ray range (0.1-12 keV) with a complex, systematic and consistent
analysis of all data collected by the European Photon Imaging Camera (EPIC)
instrument onboard the ESA XMM-Newton X-ray observatory since its launch. We
will search for, and characterize variability (both periodic and aperiodic) in
hundreds of thousands of sources spanning more than nine orders of magnitude in
time scale and six orders of magnitude in flux. We will also search for fast
transients, missed by standard image analysis. Our analysis will be completed
by multiwavelength characterization of new discoveries and phenomenological
classification of variable sources. All results and products will be made
available to the community in a public archive, serving as a reference for a
broad range of astrophysical investigations.Comment: 4 pages, 1 figure. Refereed Proceeding of "The Universe of Digital
Sky Surveys" conference held at the INAF - Observatory of Capodimonte,
Naples, on 25th-28th November 2014, to be published in the Astrophysics and
Space Science Proceedings, edited by Longo, Napolitano, Marconi, Paolillo,
Iodic
ILLUMINATING THE DARKEST GAMMA-RAY BURSTS WITH RADIO OBSERVATIONS
We present X-ray, optical, near-infrared (IR), and radio observations of gamma-ray bursts (GRBs) 110709B and 111215A, as well as optical and near-IR observations of their host galaxies. The combination of X-ray detections and deep optical/near-IR limits establish both bursts as "dark." Sub-arcsecond positions enabled by radio detections lead to robust host galaxy associations, with optical detections that indicate z ≾ 4 (110709B) and z ≈ 1.8-2.9 (111215A). We therefore conclude that both bursts are dark due to substantial rest-frame extinction. Using the radio and X-ray data for each burst we find that GRB 110709B requires A_V^(host) ≳ 5.3 mag and GRB 111215A requires A_V^(host) ≳ 8.5 mag (assuming z = 2). These are among the largest extinction values inferred for dark bursts to date. The two bursts also exhibit large neutral hydrogen column densities of N H, int ≳ 10^(22) cm^(–2) (z = 2) as inferred from their X-ray spectra, in agreement with the trend for dark GRBs. Moreover, the inferred values are in agreement with the Galactic A_V -N_H relation, unlike the bulk of the GRB population. Finally, we find that for both bursts the afterglow emission is best explained by a collimated outflow with a total beaming-corrected energy of E_γ + E_K ≈ (7-9) × 10^(51) erg (z = 2) expanding into a wind medium with a high density, Ṁ ≈ (6-20) x 10^(-5) M_☉ yr^(–1) (n ≈ 100-350 cm^(–3) at ≈ 10^(17) cm). While the energy release is typical of long GRBs, the inferred density may be indicative of larger mass-loss rates for GRB progenitors in dusty (and hence metal rich) environments. This study establishes the critical role of radio observations in demonstrating the origin and properties of dark GRBs. Observations with the JVLA and ALMA will provide a sample with sub-arcsecond positions and robust host associations that will help to shed light on obscured star formation and the role of metallicity in GRB progenitors
Study of Envelope Velocity Evolution of Type Ib-c Core-Collapse Supernovae from Observations of XRF 080109 / SN 2008D and GRB 060218 / SN 2006aj with BTA
Results of modeling the spectra of two supernovae SN 2008D and SN 2006aj
related to the X-ray flash XRF 080109 and gamma-ray burst GRB / XRF 060218,
respectively, are studied. The spectra were obtained with the 6-meter BTA
telescope of the Special Astrophysical Observatory of the Russian Academy of
Sciences in 6.48 and 27.61 days after the explosion of SN 2008D, and in 2.55
and 3.55 days after the explosion of SN 2006aj. The spectra were interpreted in
the Sobolev approximation with the SYNOW code. An assumption about the presence
of envelopes around the progenitor stars is confirmed by an agreement between
the velocities of lines interpreted as hydrogen and helium, and the empiric
power-law velocity drop with time for the envelopes of classic core-collapse
supernovae. Detection of a P Cyg profile of the H-beta line in the spectra of
optical afterglows of GRBs can be a determinative argument in favor of this
hypothesis.Comment: 12 pages, 6 figures, accepted for publication in Astrophysical
Bulletin
Short Gamma Ray Bursts as possible electromagnetic counterpart of coalescing binary systems
Coalescing binary systems, consisting of two collapsed objects, are among the
most promising sources of high frequency gravitational waves signals
detectable, in principle, by ground-based interferometers. Binary systems of
Neutron Star or Black Hole/Neutron Star mergers should also give rise to short
Gamma Ray Bursts, a subclass of Gamma Ray Bursts. Short-hard-Gamma Ray Bursts
might thus provide a powerful way to infer the merger rate of two-collapsed
object binaries. Under the hypothesis that most short Gamma Ray Bursts
originate from binaries of Neutron Star or Black Hole/Neutron Star mergers, we
outline here the possibility to associate short Gamma Ray Bursts as
electromagnetic counterpart of coalescing binary systems.Comment: 4 pages, 1 figur
Displaying the Heterogeneity of the SN 2002cx-like Subclass of Type Ia Supernovae with Observations of the Pan-STARRS-1 Discovered SN2009ku
SN2009ku, discovered by Pan-STARRS-1, is a Type Ia supernova (SNIa), and a
member of the distinct SN2002cx-like class of SNeIa. Its light curves are
similar to the prototypical SN2002cx, but are slightly broader and have a later
rise to maximum in g. SN2009ku is brighter (~0.6 mag) than other SN2002cx-like
objects, peaking at M_V = -18.4 mag - which is still significantly fainter than
typical SNeIa. SN2009ku, which had an ejecta velocity of ~2000 kms^-1 at 18
days after maximum brightness is spectroscopically most similar to SN2008ha,
which also had extremely low-velocity ejecta. However, SN2008ha had an
exceedingly low luminosity, peaking at M_V = -14.2 mag, ~4 mag fainter than
SN2009ku. The contrast of high luminosity and low ejecta velocity for SN2009ku
is contrary to an emerging trend seen for the SN2002cx class. SN2009ku is a
counter-example of a previously held belief that the class was more homogeneous
than typical SNeIa, indicating that the class has a diverse progenitor
population and/or complicated explosion physics. As the first example of a
member of this class of objects from the new generation of transient surveys,
SN2009ku is an indication of the potential for these surveys to find rare and
interesting objects.Comment: 7 pages, 3 figure
United classification of cosmic gamma-ray bursts and their counterparts
United classification of gamma-ray bursts and their counterparts is
established on the basis of measured characteristics: photon energy E and
emission duration T. The founded interrelation between the mentioned
characteristics of events consists in that, as the energy increases, the
duration decreases (and vice versa). The given interrelation reflects the
nature of the phenomenon and forms the E-T diagram, which represents a natural
classification of all observed events in the energy range from 10E9 to 10E-6 eV
and in the corresponding interval of durations from about 10E-2 up to 10E8 s.
The proposed classification results in the consequences, which are principal
for the theory and practical study of the phenomenon.Comment: Keywords Gamma rays: burst
Multimessenger astronomy with the Einstein Telescope
Gravitational waves (GWs) are expected to play a crucial role in the
development of multimessenger astrophysics. The combination of GW observations
with other astrophysical triggers, such as from gamma-ray and X-ray satellites,
optical/radio telescopes, and neutrino detectors allows us to decipher science
that would otherwise be inaccessible. In this paper, we provide a broad review
from the multimessenger perspective of the science reach offered by the third
generation interferometric GW detectors and by the Einstein Telescope (ET) in
particular. We focus on cosmic transients, and base our estimates on the
results obtained by ET's predecessors GEO, LIGO, and Virgo.Comment: 26 pages. 3 figures. Special issue of GRG on the Einstein Telescope.
Minor corrections include
Relativistic Mass Ejecta from Phase-transition-induced Collapse of Neutron Stars
We study the dynamical evolution of a phase-transition-induced collapse
neutron star to a hybrid star, which consists of a mixture of hadronic matter
and strange quark matter. The collapse is triggered by a sudden change of
equation of state, which result in a large amplitude stellar oscillation. The
evolution of the system is simulated by using a 3D Newtonian hydrodynamic code
with a high resolution shock capture scheme. We find that both the temperature
and the density at the neutrinosphere are oscillating with acoustic frequency.
However, they are nearly 180 out of phase. Consequently, extremely
intense, pulsating neutrino/antineutrino fluxes will be emitted periodically.
Since the energy and density of neutrinos at the peaks of the pulsating fluxes
are much higher than the non-oscillating case, the electron/positron pair
creation rate can be enhanced dramatically. Some mass layers on the stellar
surface can be ejected by absorbing energy of neutrinos and pairs. These mass
ejecta can be further accelerated to relativistic speeds by absorbing
electron/positron pairs, created by the neutrino and antineutrino annihilation
outside the stellar surface. The possible connection between this process and
the cosmological Gamma-ray Bursts is discussed.Comment: 40 pages, 11 figures, accepted for publication in JCA
Theoretical Interpretation of GRB 031203 and URCA-3
We present an analysis of the late time X-ray emission (URCA-3) connected
with GRB 031203 and SN 2003lw.Comment: 3 pages, 2 figures, to appear in the proceedings of "Relativistic
Astrophysics and Cosmology - Einstein's Legacy" meeting, November 7-11, 2005,
Munich, Germany, edited by B. Aschenbach, V. Burwitz, G. Hasinger, and B.
Leibundgu
The cosmic gamma-ray bursts and their host galaxies in a cosmological context
Studies of the cosmic gamma-ray bursts (GRBs) and their host galaxies are now starting to provide interesting or even unique new insights in observational cosmology. Observed GRB host galaxies have a median magnitude R ∼ 25 mag, and show a range of luminosities, morphologies, and star formation rates, with a median redshift z ∼ 1.0. They represent a new way of identifying a population of star-forming galaxies at cosmological redshifts, which is mostly independent of the traditional selection methods. They seem to be broadly similar to the normal field galaxy populations at comparable redshifts and magnitudes, and indicate at most a mild luminosity evolution over the redshift range they probe. Studies of GRB optical afterglows seen in absorption provide a powerful new probe of the ISM in dense, central regions of their host galaxies, which is complementary to the traditional studies using QSO absorption line systems. Some GRB hosts are heavily obscured, and provide a new way to select a population of cosmological sub-mm sources. A census of detected optical tranistents may provide an important new way to constrain the total obscured fraction of star formation over the history of the universe. Finally, detection of GRB afterglows at high redshifts (z > 6) may provide a unique way to probe the primordial star formation, massive IMF, early IGM, and chemical enrichment at the end of the cosmic reionization era
- …
