50 research outputs found

    Dimensional regularization of the spatial wave function for a singular contact interaction in the relativistic schrodinger equation

    Get PDF
    Based on our previous work in PRD 89, 125023 (2014), we stress here (for the first time) the regularization of the spatial wave function for the ή-contact interaction within the relativistic Schrodinger equation. The D-dimensional inverse Fourier transform has been utilized to map the momentum-space wave function to the spatial one. To regularize the logarithmic blow up of the wave function as x → 0, we employed the dimensional regularization technique. We assert that although the technique has been used here for the bound state only, the form of the scattering states in momentum space assures the reliability of the same technique to regularize the spatial scattering wave functions.Scopu

    Non-perturbative calculations for the effective potential of the PTPT symmetric and non-Hermitian (−gϕ4)(-g\phi^{4}) field theoretic model

    Get PDF
    We investigate the effective potential of the PTPT symmetric (−gϕ4)(-g\phi^{4}) field theory, perturbatively as well as non-perturbatively. For the perturbative calculations, we first use normal ordering to obtain the first order effective potential from which the predicted vacuum condensate vanishes exponentially as G→G+G\to G^+ in agreement with previous calculations. For the higher orders, we employed the invariance of the bare parameters under the change of the mass scale tt to fix the transformed form totally equivalent to the original theory. The form so obtained up to G3G^3 is new and shows that all the 1PI amplitudes are perurbative for both Gâ‰Ș1G\ll 1 and G≫1G\gg 1 regions. For the intermediate region, we modified the fractal self-similar resummation method to have a unique resummation formula for all GG values. This unique formula is necessary because the effective potential is the generating functional for all the 1PI amplitudes which can be obtained via ∂nE/∂bn\partial^n E/\partial b^n and thus we can obtain an analytic calculation for the 1PI amplitudes. Again, the resummed from of the effective potential is new and interpolates the effective potential between the perturbative regions. Moreover, the resummed effective potential agrees in spirit of previous calculation concerning bound states.Comment: 20 page

    Green Functions for the Wrong-Sign Quartic

    Full text link
    It has been shown that the Schwinger-Dyson equations for non-Hermitian theories implicitly include the Hilbert-space metric. Approximate Green functions for such theories may thus be obtained, without having to evaluate the metric explicitly, by truncation of the equations. Such a calculation has recently been carried out for various PTPT-symmetric theories, in both quantum mechanics and quantum field theory, including the wrong-sign quartic oscillator. For this particular theory the metric is known in closed form, making possible an independent check of these approximate results. We do so by numerically evaluating the ground-state wave-function for the equivalent Hermitian Hamiltonian and using this wave-function, in conjunction with the metric operator, to calculate the one- and two-point Green functions. We find that the Green functions evaluated by lowest-order truncation of the Schwinger-Dyson equations are already accurate at the (6-8)% level. This provides a strong justification for the method and a motivation for its extension to higher order and to higher dimensions, where the calculation of the metric is extremely difficult

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Physical Properties of Sandy Soil Affected by Soil Conditioner Under Wetting and Drying cycles

    No full text
    Information on the effectiveness of soil conditioners over a prolonged period is scarce. A laboratory experiment was undertaken to evaluate the effectiveness of a polyacrylamide (Broadleaf P4) soil conditioner on the physical properties of sandy soil subjected to wetting and drying cycles. Four concentrations of Broadleaf P4 0, 0.2, 0.4, and 0.6% on dry weight basis were uniformly mixed with a calcareous sandy soil. Addition of Broadleaf P4 to sandy soil increased the water holding capacity, decreased the bulk density, and increased the porosity and void ratio at 0 and 16 wetting and drying cycles. The coefficient of linear extensibility increased considerably with increasing concentrations of the polymer. The addition of polymer at 0 and 16 cycles increased considerably the retention and availability of water in sandy soil. Saturated hydraulic conductivity decreased with increasing concentrations of Broadleaf P4 whereas unsaturated hydraulic conductivity at 0 and 16 cycles showed an increase with increasing soil moisture contents. After I6 wetting and drying cycles, the capacity of the soil to hold water was lost on average by 15.8% when compared to the 0 wetting and drying cycle. The effectiveness of the soil conditioner on bulk density, coefficient of linear extensibility, available water and saturated hydraulic conductivity was reduced on average by 14.1, 24.5, 21.l and 53.7% respectively. The significant changes in soil properties between 0 and 16 cycles suggested that the effectiveness of the conditioner decreased with the application of wetting and drying cycles. However, its effect was still considerable when compared to untreated soil under laboratory conditions

    Physical Properties of Sandy Soil Affected by Soil Conditioner Under Wetting and Drying cycles

    No full text
    Information on the effectiveness of soil conditioners over a prolonged period is scarce. A laboratory experiment was undertaken to evaluate the effectiveness of a polyacrylamide (Broadleaf P4) soil conditioner on the physical properties of sandy soil subjected to wetting and drying cycles. Four concentrations of Broadleaf P4 0, 0.2, 0.4, and 0.6% on dry weight basis were uniformly mixed with a calcareous sandy soil. Addition of Broadleaf P4 to sandy soil increased the water holding capacity, decreased the bulk density, and increased the porosity and void ratio at 0 and 16 wetting and drying cycles. The coefficient of linear extensibility increased considerably with increasing concentrations of the polymer. The addition of polymer at 0 and 16 cycles increased considerably the retention and availability of water in sandy soil. Saturated hydraulic conductivity decreased with increasing concentrations of Broadleaf P4 whereas unsaturated hydraulic conductivity at 0 and 16 cycles showed an increase with increasing soil moisture contents. After I6 wetting and drying cycles, the capacity of the soil to hold water was lost on average by 15.8% when compared to the 0 wetting and drying cycle. The effectiveness of the soil conditioner on bulk density, coefficient of linear extensibility, available water and saturated hydraulic conductivity was reduced on average by 14.1, 24.5, 21.l and 53.7% respectively. The significant changes in soil properties between 0 and 16 cycles suggested that the effectiveness of the conditioner decreased with the application of wetting and drying cycles. However, its effect was still considerable when compared to untreated soil under laboratory conditions

    Impact of Sewage Sludge on Water Movement in Calcareous Sandy Soils

    No full text
    The present study was undertaken to investigate the changes in soil physical properties and their effect on water movement under ponded irrigation. Sewage sludge was applied to 10 cm soil depth at rates of 0.25. 75  and 100 Mg-ha-1 to two disturbed soils differing in CaCO3 content. The results showed that cumulative infiltration (1) decreased with an increase in sewage sludge rates. Basic infiltration for slightly calcareous sandy soil was higher than that of moderately calcareous sandy soil, laboratory measurements showed an exponential decrease in saturated hydraulic conductivity and an increase in available water capacity with an increase in sewage sludge rates. For both soils, water diffusivity (D(Q)) decreased with an increase in sewage sludge rates. The (oral) values of slightly calcareous sandy soils were higher than those of moderately calcareous sandy soils

    Impact of Sewage Sludge on Water Movement in Calcareous Sandy Soils

    No full text
    The present study was undertaken to investigate the changes in soil physical properties and their effect on water movement under ponded irrigation. Sewage sludge was applied to 10 cm soil depth at rates of 0.25. 75  and 100 Mg-ha-1 to two disturbed soils differing in CaCO3 content. The results showed that cumulative infiltration (1) decreased with an increase in sewage sludge rates. Basic infiltration for slightly calcareous sandy soil was higher than that of moderately calcareous sandy soil, laboratory measurements showed an exponential decrease in saturated hydraulic conductivity and an increase in available water capacity with an increase in sewage sludge rates. For both soils, water diffusivity (D(Q)) decreased with an increase in sewage sludge rates. The (oral) values of slightly calcareous sandy soils were higher than those of moderately calcareous sandy soils
    corecore