1,561 research outputs found

    ROSAT PSPC observations of nearby spiral galaxies - II. Statistical properties

    Get PDF
    We present a statistical analysis of the largest X-ray survey of nearby spiral galaxies in which diffuse emission has been separated from discrete source contributions. Regression and rank-order correlation analyses are used to compare X-ray properties such as total, source and diffuse luminosities, and diffuse emission temperature, with a variety of physical and multi-wavelength properties, such as galaxy mass, type and activity, and optical and infrared luminosity. The results are discussed in terms of the way in which hot gas and discrete X-ray sources scale with the mass and activity of galaxies, and with the star formation rate. We find that the X-ray properties of starburst galaxies are dependent primarily on their star-forming activity, whilst for more quiescent galaxies, galaxy mass is the more important parameter. One of the most intriguing results is the tight linear scaling between far-infrared and diffuse X-ray luminosity across the sample, even though the hot gas changes from a hydrostatic corona to a free wind across the activity range sampled here.Comment: 13 pages, latex file, 18 postscript figures, to appear in MNRA

    Spectral properties of the one-dimensional two-channel Kondo lattice model

    Full text link
    We have studied the energy spectrum of a one-dimensional Kondo lattice, where the localized magnetic moments have SU(N) symmetry and two channels of conduction electrons are present. At half filling, the system is shown to exist in two phases: one dominated by RKKY-exchange interaction effects, and the other by Kondo screening. A quantum phase transition point separates these two regimes at temperature T=0T = 0. The Kondo-dominated phase is shown to possess soft modes, with spectral gaps much smaller than the Kondo temperature.Comment: 4 pages + 2 figures. Submitted for publicatio

    The XMM-Newton Slew view of IGRJ17361-4441: a transient in the globular cluster NGC 6388

    Full text link
    IGRJ17361-4441 is a hard transient recently observed by the INTEGRAL satellite. The source, close to the center of gravity of the globular cluster NGC 6388, quickly became the target of follow-up observations conducted by the Chandra, Swift/XRT and RXTE observatories. Here, we concentrate in particular on a set of observations conducted by the XMM-Newton satellite during two slews, in order to get the spectral information of the source and search for spectral variations. The spectral parameters determined by the recent XMM-Newton slew observations were compared to the previously known results. The maximum unabsorbed XX-ray flux in the 0.5-10 keV band as detected by the XMM-Newton slew observations is 4.5×1011\simeq 4.5\times 10^{-11} erg cm2^{-2} s1^{-1}, i.e. consistent with that observed by the Swift/XRT satellite 15 days earlier. The spectrum seems to be marginally consistent (Γ0.931.63\Gamma\simeq 0.93-1.63) with that derived from the previous high energy observation.Comment: Accepted for publication on New Astronomy, 2012. A sentence about the globular cluster 47 Tuc was partially rewritten to avoid confusio

    Lusztig limit of quantum sl(2) at root of unity and fusion of (1,p) Virasoro logarithmic minimal models

    Full text link
    We introduce a Kazhdan--Lusztig-dual quantum group for (1,p) Virasoro logarithmic minimal models as the Lusztig limit of the quantum sl(2) at pth root of unity and show that this limit is a Hopf algebra. We calculate tensor products of irreducible and projective representations of the quantum group and show that these tensor products coincide with the fusion of irreducible and logarithmic modules in the (1,p) Virasoro logarithmic minimal models.Comment: 19 page

    High-resolution UV spectrum of the benzene—N2 van der Waals complex

    Get PDF
    The rotationally resolved spectrum of the 610 band of the S1 ← S0 electronic transition of the benzene—N2 van der Waals complex has been recorded and 119 transitions assigned. The C6H6·N2 complex, produced in a pulsed molecular beam, was detected by mass-selected two-photon two-colour ionization employing a high-resolution (ΔνUV = 100 MHz, fwhm) pulsed-amplified cw laser for the resonant intermediate excitation. The observed rotational structure is that of a rigid symmetric top with weaker additional rotational transitions most likely arising from the free internal rotation of the N2 in the plane parallel to the benzene ring. The N2 is located parallel to the benzene ring at a distance of 3.50 Å; this decreases by 45 mÅ in the excited electronic state

    Analytical results for the Coqblin-Schrieffer model with generalized magnetic fields

    Full text link
    Using the approach alternative to the traditional Thermodynamic Bethe Ansatz, we derive analytical expressions for the free energy of Coqblin-Schrieffer model with arbitrary magnetic and crystal fields. In Appendix we discuss two concrete examples including the field generated crossover from the SU(4) to the SU(2) symmetry in the SU(4)-symmetric model.Comment: 5 page

    Chiral Dynamics and Fermion Mass Generation in Three Dimensional Gauge Theory

    Full text link
    We examine the possibility of fermion mass generation in 2+1- dimensional gauge theory from the current algebra point of view.In our approach the critical behavior is governed by the fluctuations of pions which are the Goldstone bosons for chiral symmetry breaking. Our analysis supports the existence of an upper critical number of Fermion flavors and exhibits the explicit form of the gap equation as well as the form of the critical exponent for the inverse correlation lenght of the order parameterComment: Latex,10 pages,DFUPG 70/9

    Chiral Spin Liquids and Quantum Error Correcting Codes

    Get PDF
    The possibility of using the two-fold topological degeneracy of spin-1/2 chiral spin liquid states on the torus to construct quantum error correcting codes is investigated. It is shown that codes constructed using these states on finite periodic lattices do not meet the necessary and sufficient conditions for correcting even a single qubit error with perfect fidelity. However, for large enough lattice sizes these conditions are approximately satisfied, and the resulting codes may therefore be viewed as approximate quantum error correcting codes.Comment: 9 pages, 3 figure

    Three dimensional resonating valence bond liquids and their excitations

    Full text link
    We show that there are two types of RVB liquid phases present in three-dimensional quantum dimer models, corresponding to the deconfining phases of U(1) and Z_2 gauge theories in d=3+1. The former is found on the bipartite cubic lattice and is the generalization of the critical point in the square lattice quantum dimer model found originally by Rokhsar and Kivelson. The latter exists on the non-bipartite face-centred cubic lattice and generalizes the RVB phase found earlier by us on the triangular lattice. We discuss the excitation spectrum and the nature of the ordering in both cases. Both phases exhibit gapped spinons. In the U(1) case we find a collective, linearly dispersing, transverse excitation, which is the photon of the low energy Maxwell Lagrangian and we identify the ordering as quantum order in Wen's sense. In the Z_2 case all collective excitations are gapped and, as in d=2, the low energy description of this topologically ordered state is the purely topological BF action. As a byproduct of this analysis, we unearth a further gapless excitation, the pi0n, in the square lattice quantum dimer model at its critical point.Comment: 9 pages, 2 figure

    Edge reconstructions in fractional quantum Hall systems

    Full text link
    Two dimensional electron systems exhibiting the fractional quantum Hall effects are characterized by a quantized Hall conductance and a dissipationless bulk. The transport in these systems occurs only at the edges where gapless excitations are present. We present a {\it microscopic} calculation of the edge states in the fractional quantum Hall systems at various filling factors using the extended Hamiltonian theory of the fractional quantum Hall effect. We find that at ν=1/3\nu=1/3 the quantum Hall edge undergoes a reconstruction as the background potential softens, whereas quantum Hall edges at higher filling factors, such as ν=2/5,3/7\nu=2/5, 3/7, are robust against reconstruction. We present the results for the dependence of the edge states on various system parameters such as temperature, functional form and range of electron-electron interactions, and the confining potential. Our results have implications for the tunneling experiments into the edge of a fractional quantum Hall system.Comment: 11 pages, 9 figures; minor typos corrected; added 2 reference
    corecore