1,089 research outputs found

    Intensive groundwater exploitation in the Punjab : an evaluation of resource and quality trends

    Get PDF
    This report summarises initial findings from a case study investigating the response of groundwater resources in Punjab State, India, to irrigated agriculture. Punjab was central to India’s green revolution, and with fertile soils, abundant surface water and groundwater resources, Indian’s farmers soon transformed the State to be the “bread basket” of India. Currently approximately 20% and 11% respectively of India’s wheat and rice production, 10% of cotton production comes from Punjab. The aim of the case study is to examine the response of groundwater in a representative area within Punjab to current pressures from sustained intensive abstraction and pollution, investigate groundwater recharge, and forecast likely future trajectories. The Bist-Doab area was chosen as for the case study: the geology and hydrogeology is typical of the Punjab, situated on the thick and extensive multi-layered alluvial Indo-Gangetic aquifer and has an annual average rainfall of 700 mm. The Doab is one of the most productive agricultural regions in the Punjab and has experienced intense groundwater pumping from shallow aquifers for at least the last four decades. The hydrogeology of this region is best understood as an aquifer system comprising a series of thick high permeability horizons (>10 m thick) divided by thick low permeability horizons with highly variable lateral extent. Locally these are referred to as the first (shallow), second and third etc. (deep) aquifers, although the aquifers are not laterally continuous over long distrances. The following work was undertaken from 2013 to 2014: An analysis of groundwater level monitoring data (1970-2012) from the Indian Central Ground Water Board (CGWB) was carried out. New hydrochemical observations and residence time indicators (CFC and SF6) taken from 19 locations were obtained from paired shallow (100 mbgl) sites across the Bist-Doab under pre and post monsoon conditions. Stable isotope observations were collected and assessed within the context of an ongoing study by NIH investigating spatial and temporal changes in stable isotope chemistry in groundwater and surface water across Bist-Doab. Long-term groundwater monitoring undertaken by the CGWB since the 1970s shows declining shallow pre-monsoon groundwater levels (up to 0.8 m/y in places) across 20-25% of the Bist-Doab. Hydrographs responses imply that for some areas this has led to enhanced recharge during the monsoon. However, for the most affected region of the Bist-Doab, declining post monsoon water levels suggest that abstraction for irrigation is now outstripping the enhanced recharge potential. In the long-term this will lead to a continued decline in shallow groundwater levels pre-monsoon, currently commonly found to be >20 mbgl, with future implications for irrigation. For most sites there is a significant difference between stable isotope values for the paired deep and the shallow groundwater, with deeper sites showing isotopically depleted signatures relative to the shallow samples. This is consistent with different recharge areas and pathways for the paired sites at any given location, with the deeper sites have a greater component of water that was recharged some distance up-gradient (i.e. towards the recharge zone at the foot of the Shiwalik range). This source has a depleted isotope signature compared to the shallow aquifer due to Raleigh distillation processes as monsoon moisture tracks from the Bay of Bengal. Based on the distinct depleted stable isotope values of the Sutlej canal system, there is no evidence of significant component of regional groundwater recharge in either the shallow or deeper aquifer from this source. However, it is likely that this is important at locations in close proximity to the canal network. Results obtained using chlorofluorocarbon (CFC-12) groundwater age tracers show that average shallow groundwater mean residence times (MRTs) are 29 years and 30 years under post-monsoon and pre-monsoon conditions. Deep groundwater (>100 mbgl) had median MRTs of 45 vii years. There is no obvious relationship between deep groundwater MRTs and distance from the recharge zone at the foot of the Shiwalik hills. However, deep groundwater MRTs are much younger than would be expected under natural groundwater flow regimes, where groundwater residence times of the order of ca.102-103 years or more might be expected based on the aquifer properties and the distance from the recharge zone, some 50- 100 km down-gradient in many cases. Areas with fastest long-term declining groundwater levels show evidence of enhanced modern recharge in both shallow and deep groundwater, suggesting that there is a significant component of vertical leakage to deeper aquifers induced by long-term intensive pumping. This corroborates findings from modelling studies undertaken in analogous multi-layered alluvial systems in Gujerat, India (Rushton 1986). There is evidence of nitrate breakthrough from the shallow groundwater to depth and this is likely to be enhanced in the future if the current increases in pumping from the shallow and deep aquifers continue. This has implications for future contamination of deep sources of drinking water from other anthropogenic contaminants such as pesticides. The naturally occurring contaminants arsenic and fluoride were present at concentrations below WHO guideline drinking water limits for all sites and median concentrations were below 2 g/L and 0.4 mg/L respectively. Uranium concentrations in deep groundwater are significantly higher compared to shallow groundwater (p15 g/L, the provisional WHO guideline concentration for drinking water is currently 30 g/L (WHO, 2012). This is a result of water-rock interactions and mineral dissolution and longer residence times. The findings from this case study have broad relevance across a large geographical area as similar groundwater typologies extend within the Indus basin, to the west across Indian Punjab, Rajasthan and Pakisan Punjab as well as in the Ganga basin to the east in the Indian states of Haryana and Delhi. While the broad findings from this study are relevant across a large geographical area, local anthropogenic and geogenic factors, as well as heterogeneity, will of course influence the recharge, hydraulic flow processes and geochemistry, and need to be considered in a consistent way

    Interactions of inert confiners with explosives

    Get PDF
    The deformation of an inert confiner by a steady detonation wave in an adjacent explosive is investigated for cases where the confiner is suciently strong (or the explosive suciently weak) such that the overall change in the sound speed of the inert is small. A coupling condition which relates the pressure to the deflection angle along the explosive-inert interface is determined. This includes its dependence on the thickness of the inert, for cases where the initial sound speed of the inert is less than or greater than the detonation speed in the explosive (supersonic and subsonic inert ows, respectively). The deformation of the inert is then solved by prescribing the pressure along the interface. In the supersonic case, the detonation drives a shock into the inert, subsequent to which the ow in the inert consists of alternating regions of compression and tension. In this case reverberations or `ringing' occurs along both the deflected interface and outer edge of the inert. For the subsonic case, the flow in the interior of the inert is smooth and shockless. The detonation in the explosive initially defl ects the smooth interface towards the explosive. For sufficiently thick inerts in such cases, it appears that the deflection of the confiner would either drive the detonation speed in the explosive up to the sound speed of the inert or drive a precursor wave ahead of the detonation in the explosive. Transonic cases, where the inert sound speed is close to the detonation speed, are also considered. It is shown that the confinement affect of the inert on the detonation is enhanced as sonic conditions are approached from either side

    A study of prevalence of obesity and its correlates among government and private school children in Hyderabad: a comparative study

    Get PDF
    Background: Obesity has reached epidemic proportions in India in the 21st Century, affecting 5% of the country’s population. Childhood obesity is an emerging problem in urban Indian children and increase in childhood overweight and obesity may be a major contributor to adult obesity epidemic. Hence present study has been planned with the objective to study and compare the prevalence of obesity in government and private schools and also to study the risk factors associated with obesity.Methods: An institution based cross sectional study was carried out among 718 school children of randomly selected government and private schools of Hyderabad city. Students were enquired about their physical activity and dietary habits as per the questionnaire. Anthropometry measurements like height and weight were recorded for each student. Data was analyzed using appropriate statistical tests.Results: Prevalence of obesity was found to be 21.09% among private school children and 19% in government school children. Physical activity factors like conveyance to school and less frequency of outdoor games were significantly associated with obesity. Diet related determinants like intake of soft drinks, sweets, pizza, fruits were found to be associated with obesity.Conclusions: It can be concluded that the prevalence of obesity in schools of Hyderabad is very high and it is positively associated with inappropriate exercise and improper dietary practices.

    Groundwater recharge sources and processes in northwest India: evidence from high frequency water isotope observations

    Get PDF
    Water isotopes and specific electrical conductivity (SEC) are used in this paper to investigate groundwater recharge sources and processes in a catchment with a history of high groundwater abstraction for irrigation and canal irrigation. High frequency (every 10 days) samples for water stable isotope analysis (δ18O and δ2H) were sampled from a dense network of shallow (100 m) hand pumps and tube wells in Bist-Doab, northern Punjab between 2009 and 2014. New hydrological insights for this region The study indicates that groundwater recharge is dominated by meteoric sources from high intensity events. However, in a small proportion of sites located in close proximity to some canals and rivers have significant surface water inputs. Isotope observations indicate rapid changes in groundwater recharge sources linked to post-monsoon pumping and seasonal connectivity to surface water inputs, even at some deep sites. Rapid changes are likely linked to poor well integrity, highlighting the risk to groundwater sources from surface water ingress. Shallow groundwaters had significantly higher SEC compared to deeper groundwater observations (p = 0.0002). Overall groundwater SEC is still relatively low (<2000 μS/cm). However, based on previously published mean residence time of (<50 years) in shallow groundwater the high rate of change in salinity at some sites (2.5–10% per year) is of potential concern

    Groundwater quality in the alluvial aquifer system of northwest India: new evidence of the extent of anthropogenic and geogenic contamination

    Get PDF
    Groundwater depletion has been widely studied in northwest India, but water quality concerns are still poorly constrained. In this study, we explore the hydrochemistry of the top 160 m of the aquifer system, through detailed field studies in the Bist-Doab region, considering both anthropogenic and geogenic controls. A detailed comparison is made between sites dominated by urban and agricultural landuse. Salinity, nitrate, chloride and lead concentrations are significantly higher in the shallow (0-50 m ) groundwater system due to surface anthropogenic contaminant loading from agricultural and urban sources. The widespread occurrence of oxic groundwater within the aquifer system means that denitrification potential is limited and also enhances the mobility of selenium and uranium in groundwater. Geogenic trace elements (e.g. As, Se, F), are generally found at concentrations below WHO guideline drinking water values, however elevated U concentrations (50-70 g/L) are found within the deeper part of the aquifer and shallow urban aquifers associated with higher bicarbonate waters. Higher concentration of Se (10-40 g/L) are found exclusively in the shallow groundwater system where Se is mobilised from soils and transported to depth in the shallow aquifer due to the prevailing oxidising aquifer conditions. New evidence from a range of environmental tracers shows elevated concentrations of anthropogenic contaminants in the deeper part of the aquifer (50-160 m deep) and demonstrates vulnerability to vertical migration of contaminants. Continued intensive groundwater abstraction from >100 m deep means that water quality risks to the deep aquifer system need to be considered together with water quantity constraints

    Thickness dependence of the stability of the charge-ordered state in Pr0.5_{0.5}Ca0.5_{0.5}MnO3_{3} thin films

    Full text link
    Thin films of the charge-ordered (CO) compound Pr0.5_{0.5}Ca0.5_{0.5}MnO3_{3} have been deposited onto (100)-oriented SrTiO3_{3} substrates using the Pulsed Laser Deposition technique. Magnetization and transport properties are measured when the thickness of the film is varied. While the thinner films do not exhibit any temperature induced insulator-metal transition under an applied magnetic field up to 9T, for thickness larger than 1100\UNICODE{0xc5} a 5T magnetic field is sufficient to melt the CO state. For this latest film, we have measured the temperature-field phase diagram. Compared to the bulk material, it indicates that the robustness of the CO state in thin films is strongly depending on the strains and the thickness. We proposed an explanation based on the distortion of the cell of the film.Comment: 9 pages, 6 figures, submitted to Phys. Rev.

    Transfer measurements for the Ti plus Ni systems at near barrier energies

    Get PDF
    Large enhancements have been observed in the sub-barrier fusion cross sections for Ti + Ni systems in our previous studies. Coupled channel calculations incorporating couplings to 2(+) and 3(-) states failed to explain these enhancements completely. A possibilty of transfer channels contributing to the residual enhancements had been suggested. In order to investigate the role of relevant transfer channels, measurements of one- and two-nucleon transfer were carried out for Ti-46,Ti-48 + Ni-64 systems. The present paper gives the results of these studies

    The TBX21 transcription factor T-1993C polymorphism is associated with decreased IFN-Îł and IL-4 production by primary human lymphocytes

    Get PDF
    T-bet is a transcription factor that drives the Th1 immune response primarily through promoting expression of the IFN-Îł gene. Polymorphisms in the T-bet gene, TBX21, have been associated with immune-mediated diseases such as asthma and systemic sclerosis. We found that the TBX21 promoter polymorphism T-1993C is associated with a significant decrease in IL-4 and IFN-Îł production by stimulated primary human lymphocytes from healthy participants

    A novel mutation in the FGD4 gene causing Charcot-Marie-Tooth disease.

    Get PDF
    Demyelinating forms of Charcot-Marie-Tooth (CMT) result from mutations in a number of genes, the majority of which show an autosomal dominant pattern of inheritance [1]. Recessive patterns of inheritance are less common. We report a case of demyelinating CMT resulting from compound heterozygous mutation in the FGD4 gene
    • …
    corecore