261 research outputs found

    Unsolvability of the Halting Problem in Quantum Dynamics

    Get PDF
    It is shown that the halting problem cannot be solved consistently in both the Schrodinger and Heisenberg pictures of quantum dynamics. The existence of the halting machine, which is assumed from quantum theory, leads into a contradiction when we consider the case when the observer's reference frame is the system that is to be evolved in both pictures. We then show that in order to include the evolution of observer's reference frame in a physically sensible way, the Heisenberg picture with time going backwards yields a correct description.Comment: 4 pages, 3 figure

    An easy proof of Jensen's theorem on the uniqueness of infinity harmonic functions

    Get PDF
    We present a new, easy, and elementary proof of Jensen's Theorem on the uniqueness of infinity harmonic functions. The idea is to pass to a finite difference equation by taking maximums and minimums over small balls.Comment: 4 pages; comments added, proof simplifie

    Experimental Realization of the Quantum Box Problem

    Full text link
    The three-box problem is a gedankenexperiment designed to elucidate some interesting features of quantum measurement and locality. A particle is prepared in a particular superposition of three boxes, and later found in a different (but nonorthogonal) superposition. It was predicted that appropriate "weak" measurements of particle position in the interval between preparation and post-selection would find the particle in two different places, each with certainty. We verify these predictions in an optical experiment and address the issues of locality and of negative probability.Comment: 5 pages, 4 figure

    Optimal manipulations with qubits: Universal quantum entanglers

    Get PDF
    We analyze various scenarios for entangling two initially unentangled qubits. In particular, we propose an optimal universal entangler which entangles a qubit in unknown state Ψ>|\Psi> with a qubit in a reference (known) state 0>|0>. That is, our entangler generates the output state which is as close as possible to the pure (symmetrized) state (Ψ>0>+0>Ψ>)(|\Psi>|0> +|0>|\Psi>). The most attractive feature of this entangling machine, is that the fidelity of its performance (i.e. the distance between the output and the ideally entangled -- symmetrized state) does not depend on the input and takes the constant value F=(9+32)/140.946F= (9+3\sqrt{2})/14\simeq 0.946. We also analyze how to optimally generate from a single qubit initially prepared in an unknown state |\Psi\r a two qubit entangled system which is as close as possible to a Bell state (Ψ˚Ψ+˚Ψ˚Ψ)˚(|\Psi\r|\Psi^\perp\r+|\Psi^\perp\r|\Psi\r), where \l\Psi|\Psi^\perp\r =0.Comment: 11 pages, 3 eps figures, accepted for publication in Phys. Rev.

    Determination of 2,4,6-trichloroanisole by cyclic voltammetry

    Get PDF
    The electrochemical reduction of 2,4,6-trichloroanisole (TCA), a chlorinated arene with electron-donating substituents, was evaluated by cyclic voltammetry (CV). TCA is a major concern for the winery industry since it is related with “cork taint”, a wine defect. The results obtained showed that CV could be used to detect and quantify TCA in standard solutions. Linear relationships could be set between the current amplitude and TCA concentrations (R>0.990) with detection and quantification limits of 0.08 and 0.26 ppm. Although, these preliminary limits are higher than the human sensory threshold (5 ppt in wine), the simplicity of the methodology confers this study a possible role in the development of more efficient and less expensive process for TCA detection in the industry.This work was partially supported by project PEst-C/EQB/LA0020/2011, financed by FEDER through COMPETE - Programa Operacional Factores de Competitividade and by FCT - Fundacao para a Ciencia e a Tecnologia

    Status of atmospheric neutrino(mu)<-->neutrino(tau) oscillations and decoherence after the first K2K spectral data

    Get PDF
    We review the status of nu_mu-->nu_tau flavor transitions of atmospheric neutrinos in the 92 kton-year data sample collected in the first phase of the Super-Kamiokande (SK) experiment, in combination with the recent spectral data from the KEK-to-Kamioka (K2K) accelerator experiment (including 29 single-ring muon events). We consider a theoretical framework which embeds flavor oscillations plus hypothetical decoherence effects, and where both standard oscillations and pure decoherence represent limiting cases. It is found that standard oscillations provide the best description of the SK+K2K data, and that the associated mass-mixing parameters are determined at 1 sigma (and d.o.f.=1) as: Delta m^2=(2.6 +- 0.4)x10^{-3} eV^2 and sin^2(2theta)=1.00+0.00-0.05. As compared with standard oscillations, the case of pure decoherence is disfavored, although it cannot be ruled out yet. In the general case, additional decoherence effects in the nu_mu-->nu_tau channel do not improve the fit to the SK and K2K data, and upper bounds can be placed on the associated decoherence parameter. Such indications, presently dominated by SK, could be strengthened by further K2K data, provided that the current spectral features are confirmed with higher statistics. A detailed description of the statistical analysis of SK and K2K data is also given, using the so-called ``pull'' approach to systematic uncertainties.Comment: 18 pages (RevTeX) + 12 figures (PostScript

    Quantum Gambling Using Two Nonorthogonal States

    Get PDF
    We give a (remote) quantum gambling scheme that makes use of the fact that quantum nonorthogonal states cannot be distinguished with certainty. In the proposed scheme, two participants Alice and Bob can be regarded as playing a game of making guesses on identities of quantum states that are in one of two given nonorthogonal states: if Bob makes a correct (an incorrect) guess on the identity of a quantum state that Alice has sent, he wins (loses). It is shown that the proposed scheme is secure against the nonentanglement attack. It can also be shown heuristically that the scheme is secure in the case of the entanglement attack.Comment: no essential correction, 4 pages, RevTe

    Entanglement in bipartite generalized coherent states

    Full text link
    Entanglement in a class of bipartite generalized coherent states is discussed. It is shown that a positive parameter can be associated with the bipartite generalized coherent states so that the states with equal value for the parameter are of equal entanglement. It is shown that the maximum possible entanglement of 1 bit is attained if the positive parameter equals 2\sqrt{2}. The result that the entanglement is one bit when the relative phase between the composing states is π\pi in bipartite coherent states is shown to be true for the class of bipartite generalized coherent states considered.Comment: 10 pages, 4 figures; typos corrected and figures redrawn for better clarit

    Polarization Correlations of 1S0 Proton Pairs as Tests of Bell and Wigner Inequalities

    Full text link
    In an experiment designed to overcome the loophole of observer dependent reality and satisfying the counterfactuality condition, we measured polarization correlations of 1S0 proton pairs produced in 12C(d,2He) and 1H(d,He) reactions in one setting. The results of these measurements are used to test the Bell and Wigner inequalties against the predictions of quantum mechanics.Comment: 8 pages, 4 figure

    Entangling quantum measurement and its properties

    Full text link
    We study the mathematical structure of superoperators describing quantum measurements, including the \emph{entangling measurement}--the generalization of the standard quantum measurement that results in entanglement between the measurable system and apparatus. It is shown that the coherent information can be effectively used for the analysis of such entangling measurements whose possible applications are discussed as well.Comment: 8 pages, 1 figure; accepted for publication in Phys. Rev.
    corecore