864 research outputs found
Thermodynamics and collapse of self-gravitating Brownian particles in D dimensions
We address the thermodynamics (equilibrium density profiles, phase diagram,
instability analysis...) and the collapse of a self-gravitating gas of Brownian
particles in D dimensions, in both canonical and microcanonical ensembles. In
the canonical ensemble, we derive the analytic form of the density scaling
profile which decays as f(x)=x^{-\alpha}, with alpha=2. In the microcanonical
ensemble, we show that f decays as f(x)=x^{-\alpha_{max}}, where \alpha_{max}
is a non-trivial exponent. We derive exact expansions for alpha_{max} and f in
the limit of large D. Finally, we solve the problem in D=2, which displays
rather rich and peculiar features
Bifurcations in a convection problem with temperature-dependent viscosity
A convection problem with temperature-dependent viscosity in an infinite
layer is presented. As described, this problem has important applications in
mantle convection. The existence of a stationary bifurcation is proved together
with a condition to obtain the critical parameters at which the bifurcation
takes place. For a general dependence of viscosity with temperature a numerical
strategy for the calculation of the critical bifurcation curves and the most
unstable modes has been developed. For a exponential dependence of viscosity on
temperature the numerical calculations have been done. Comparisons with the
classical Rayleigh-B\'enard problem with constant viscosity indicate that the
critical threshold decreases as the exponential rate parameter increases.Comment: 16 pages, 5 figure
Challenges of open innovation: the paradox of firm investment in open-source software
Open innovation is a powerful framework encompassing the generation, capture, and employment of intellectual property at the firm level. We identify three fundamental challenges for firms in applying the concept of open innovation: finding creative ways to exploit internal innovation, incorporating external innovation into internal development, and motivating outsiders to supply an ongoing stream of external innovations. This latter challenge involves a paradox, why would firms spend money on R&D efforts if the results of these efforts are available to rival firms? To explore these challenges, we examine the activity of firms in opensource software to support their innovation strategies. Firms involved in open-source software often make investments that will be shared with real and potential rivals. We identify four strategies firms employ â pooled R&D/product development, spinouts, selling complements and attracting donated complements â and discuss how they address the three key challenges of open innovation. We conclude with suggestions for how similar strategies may apply in other industries and offer some possible avenues for future research on open innovation
Duality cascades and duality walls
We recast the phenomenon of duality cascades in terms of the Cartan matrix
associated to the quiver gauge theories appearing in the cascade. In this
language, Seiberg dualities for the different gauge factors correspond to Weyl
reflections. We argue that the UV behavior of different duality cascades
depends markedly on whether the Cartan matrix is affine ADE or not. In
particular, we find examples of duality cascades that can't be continued after
a finite energy scale, reaching a "duality wall", in terminology due to M.
Strassler. For these duality cascades, we suggest the existence of a UV
completion in terms of a little string theory.Comment: harvmac, 24 pages, 4 figures. v2: references added. v3: reference
adde
Effect of halo modelling on WIMP exclusion limits
WIMP direct detection experiments are just reaching the sensitivity required
to detect galactic dark matter in the form of neutralinos. Data from these
experiments are usually analysed under the simplifying assumption that the
Milky Way halo is an isothermal sphere with maxwellian velocity distribution.
Observations and numerical simulations indicate that galaxy halos are in fact
triaxial and anisotropic. Furthermore, in the cold dark matter paradigm
galactic halos form via the merger of smaller subhalos, and at least some
residual substructure survives. We examine the effect of halo modelling on WIMP
exclusion limits, taking into account the detector response. Triaxial and
anisotropic halo models, with parameters motivated by observations and
numerical simulations, lead to significant changes which are different for
different experiments, while if the local WIMP distribution is dominated by
small scale clumps then the exclusion limits are changed dramatically.Comment: 9 pages, 9 figures, version to appear in Phys. Rev. D, minor change
Mirror Symmetry and Other Miracles in Superstring Theory
The dominance of string theory in the research landscape of quantum gravity
physics (despite any direct experimental evidence) can, I think, be justified
in a variety of ways. Here I focus on an argument from mathematical fertility,
broadly similar to Hilary Putnam's 'no miracles argument' that, I argue, many
string theorists in fact espouse. String theory leads to many surprising,
useful, and well-confirmed mathematical 'predictions' - here I focus on mirror
symmetry. These predictions are made on the basis of general physical
principles entering into string theory. The success of the mathematical
predictions are then seen as evidence for framework that generated them. I
attempt to defend this argument, but there are nonetheless some serious
objections to be faced. These objections can only be evaded at a high
(philosophical) price.Comment: For submission to a Foundations of Physics special issue on "Forty
Years Of String Theory: Reflecting On the Foundations" (edited by G. `t
Hooft, E. Verlinde, D. Dieks and S. de Haro)
Zero-range process with open boundaries
We calculate the exact stationary distribution of the one-dimensional
zero-range process with open boundaries for arbitrary bulk and boundary hopping
rates. When such a distribution exists, the steady state has no correlations
between sites and is uniquely characterized by a space-dependent fugacity which
is a function of the boundary rates and the hopping asymmetry. For strong
boundary drive the system has no stationary distribution. In systems which on a
ring geometry allow for a condensation transition, a condensate develops at one
or both boundary sites. On all other sites the particle distribution approaches
a product measure with the finite critical density \rho_c. In systems which do
not support condensation on a ring, strong boundary drive leads to a condensate
at the boundary. However, in this case the local particle density in the
interior exhibits a complex algebraic growth in time. We calculate the bulk and
boundary growth exponents as a function of the system parameters
Adding flavor to AdS/CFT
Coupling fundamental quarks to QCD in the dual string representation
corresponds to adding the open string sector. Flavors therefore should be
represented by space-time filling D-branes in the dual 5d closed string
background. This requires several interesting properties of D-branes in AdS.
D-branes have to be able to end in thin air in order to account for massive
quarks, which only live in the UV region. They must come in distinct sets,
representing the chiral global symmetry, with a bifundamental field playing the
role of the chiral condensate. We show that these expectations are born out in
several supersymmetric examples. To analyze most of these properties it is not
necessary to go beyond the probe limit in which one neglects the backreaction
of the flavor D-branes.Comment: 14 pages, LaTeX; references adde
- âŠ