19 research outputs found

    Plant extracts in cell-based anti-inflammatory assays—Pitfalls and considerations related to removal of activity masking bulk components

    Get PDF
    Plants used in traditional medicine represent an important source of new lead compounds. However, cell-based in vitro screening assays with plant material are hampered by the complex nature of plant extracts as mixtures of active and inactive components. Bulk constituents, such as chlorophyll and polyphenols were previously shown to interfere with several biological in vitro assays. Their influence on anti-inflammatory cell-based testing systems has not been thoroughly investigated. Hence, the present study was aimed at comparing different procedures for the removal of bulk constituents from plant extracts and examining the influence of their elimination on selected cell-based anti-inflammatory assays. Malva sp. and Glechoma hederacea L., two plants used in traditional European medicine for the treatment of inflammatory disorders, were subjected to three different methods for the removal of chlorophyll and polyphenols, respectively. Removal of bulk constituents was confirmed by HPLC and mass spectrometry. Extracts were tested before and after the purification procedure, to determine their potential to inhibit the activation of the transcription factor NF-ÎșB in reporter gene assay and to interfere with the secretion of the chemokine IL-8 after stimulation of endothelial cells with tumor necrosis factor (TNF-α) or lipopolysaccharide (LPS). Removal of chlorophyll from tested extracts led to a strong decrease in the anti-inflammatory activities, due to loss of bioactive constituents. In contrast, the effect of the polyphenol-free extracts was either not changed or significantly increased, depending on the purification method used. The study concluded that clearance of bulk compounds represents a valuable strategy for cell-based in vitro anti-inflammatory evaluation of plant extracts. Liquid–liquid partitioning was identified as the optimal method for the elimination of both chlorophyll and polyphenols. It is recommended that removal of chlorophyll from extracts always be accompanied by HPLC profiling to detect a possible loss of active constituents

    Studies of isomeric states and limits of particle stability around N=Z=40 using fragmentation reactions

    No full text
    Fragmentation products from a 92Mo beam on a natural nickel target have been used to study structural properties of the very neutron deficient nuclei around N∌Z∌40. We present the first observation of isomeric decays in the Tz=1 systems 3674Kr, 3980 Y and 4184Nb. The isomer in 74Kr is interpreted as the hindered decay from an excited 0+ state, confirming the prediction of prolate/oblate shape coexistence in this nucleus. Transitions from states below an isomer in the N=Z nucleus 4386Tc have also been tentatively identified, making this the heaviest N=Z system for which decays from excited states have been observed. In addition, we have obtained the first conclusive evidence for the existence of the Tz = -1/2 isotopes 3977Y, 4079Zr and 4283Mo. The data for 3977Y is of particular interest in light of the reported instability in the lighter odd-Z, Tz = -1/2 systems 69Br and 73Rb
    corecore