110 research outputs found

    Lusztig limit of quantum sl(2) at root of unity and fusion of (1,p) Virasoro logarithmic minimal models

    Full text link
    We introduce a Kazhdan--Lusztig-dual quantum group for (1,p) Virasoro logarithmic minimal models as the Lusztig limit of the quantum sl(2) at pth root of unity and show that this limit is a Hopf algebra. We calculate tensor products of irreducible and projective representations of the quantum group and show that these tensor products coincide with the fusion of irreducible and logarithmic modules in the (1,p) Virasoro logarithmic minimal models.Comment: 19 page

    Resolutions and Characters of Irreducible Representations of the N=2 Superconformal Algebra

    Get PDF
    We evaluate characters of irreducible representations of the N=2 supersymmetric extension of the Virasoro algebra. We do so by deriving the BGG-resolution of the admissible N=2 representations and also a new 3,5,7...-resolution in terms of twisted massive Verma modules. We analyse how the characters behave under the automorphisms of the algebra, whose most significant part is the spectral flow transformations. The possibility to express the characters in terms of theta functions is determined by their behaviour under the spectral flow. We also derive the identity expressing every sl^(2)\hat{sl}(2) character as a linear combination of spectral-flow transformed N=2 characters; this identity involves a finite number of N=2 characters in the case of unitary representations. Conversely, we find an integral representation for the admissible N=2 characters as contour integrals of admissible sl^(2)\hat{sl}(2) characters.Comment: LaTeX2e: amsart, 34pp. An overall sign error corrected in (4.33) and several consequent formulas, and the presentation streamlined in Sec.4.2.3. References added. To appear in Nucl. Phys.

    On the Equivalence of Affine sl(2) and N=2 Superconformal Representation Theories

    Full text link
    There exist two different languages, the ^sl(2) and N=2 ones, to describe similar structures; a dictionary is given translating the key representation-theoretic terms related to the two algebras. The main tool to describe the structure of ^sl(2) and N=2 modules is provided by diagrams of extremal vectors. The ^sl(2) and N=2 representation theories of certain highest-weight types turn out to be equivalent modulo the respective spectral flows.Comment: 14 pages, LaTeX209, needs bezier.sty. Contribution to the proceedings of the 30th Int. Symposium Ahrenshoop on the theory of elementary particles, Buckow, Germany, August 27--31, 199

    Lattice fusion rules and logarithmic operator product expansions

    Full text link
    The interest in Logarithmic Conformal Field Theories (LCFTs) has been growing over the last few years thanks to recent developments coming from various approaches. A particularly fruitful point of view consists in considering lattice models as regularizations for such quantum field theories. The indecomposability then encountered in the representation theory of the corresponding finite-dimensional associative algebras exactly mimics the Virasoro indecomposable modules expected to arise in the continuum limit. In this paper, we study in detail the so-called Temperley-Lieb (TL) fusion functor introduced in physics by Read and Saleur [Nucl. Phys. B 777, 316 (2007)]. Using quantum group results, we provide rigorous calculations of the fusion of various TL modules. Our results are illustrated by many explicit examples relevant for physics. We discuss how indecomposability arises in the "lattice" fusion and compare the mechanisms involved with similar observations in the corresponding field theory. We also discuss the physical meaning of our lattice fusion rules in terms of indecomposable operator-product expansions of quantum fields.Comment: 54pp, many comments adde

    Higher string functions, higher-level Appell functions, and the logarithmic ^sl(2)_k/u(1) CFT model

    Full text link
    We generalize the string functions C_{n,r}(tau) associated with the coset ^sl(2)_k/u(1) to higher string functions A_{n,r}(tau) and B_{n,r}(tau) associated with the coset W(k)/u(1) of the W-algebra of the logarithmically extended ^sl(2)_k conformal field model with positive integer k. The higher string functions occur in decomposing W(k) characters with respect to level-k theta and Appell functions and their derivatives (the characters are neither quasiperiodic nor holomorphic, and therefore cannot decompose with respect to only theta-functions). The decomposition coefficients, to be considered ``logarithmic parafermionic characters,'' are given by A_{n,r}(tau), B_{n,r}(tau), C_{n,r}(tau), and by the triplet \mathscr{W}(p)-algebra characters of the (p=k+2,1) logarithmic model. We study the properties of A_{n,r} and B_{n,r}, which nontrivially generalize those of the classic string functions C_{n,r}, and evaluate the modular group representation generated from A_{n,r}(tau) and B_{n,r}(tau); its structure inherits some features of modular transformations of the higher-level Appell functions and the associated transcendental function Phi.Comment: 34 pages, amsart++, times. V2: references added; minor changes; some nonsense in B.3.3. correcte

    Kazhdan-Lusztig equivalence and fusion of Kac modules in Virasoro logarithmic models

    Full text link
    The subject of our study is the Kazhdan-Lusztig (KL) equivalence in the context of a one-parameter family of logarithmic CFTs based on Virasoro symmetry with the (1,p) central charge. All finite-dimensional indecomposable modules of the KL-dual quantum group - the "full" Lusztig quantum sl(2) at the root of unity - are explicitly described. These are exhausted by projective modules and four series of modules that have a functorial correspondence with any quotient or a submodule of Feigin-Fuchs modules over the Virasoro algebra. Our main result includes calculation of tensor products of any pair of the indecomposable modules. Based on the Kazhdan-Lusztig equivalence between quantum groups and vertex-operator algebras, fusion rules of Kac modules over the Virasoro algebra in the (1,p) LCFT models are conjectured.Comment: 40pp. V2: a new introduction, corrected typos, some explanatory comments added, references adde

    Associative algebraic approach to logarithmic CFT in the bulk: the continuum limit of the gl(1|1) periodic spin chain, Howe duality and the interchiral algebra

    Full text link
    We develop in this paper the principles of an associative algebraic approach to bulk logarithmic conformal field theories (LCFTs). We concentrate on the closed gl(11)gl(1|1) spin-chain and its continuum limit - the c=2c=-2 symplectic fermions theory - and rely on two technical companion papers, "Continuum limit and symmetries of the periodic gl(1|1) spin chain" [Nucl. Phys. B 871 (2013) 245-288] and "Bimodule structure in the periodic gl(1|1) spin chain" [Nucl. Phys. B 871 (2013) 289-329]. Our main result is that the algebra of local Hamiltonians, the Jones-Temperley-Lieb algebra JTL_N, goes over in the continuum limit to a bigger algebra than the product of the left and right Virasoro algebras. This algebra, S - which we call interchiral, mixes the left and right moving sectors, and is generated, in the symplectic fermions case, by the additional field S(z,zˉ)=Sabψa(z)ψˉb(zˉ)S(z,\bar{z})=S_{ab}\psi^a(z)\bar{\psi}^b(\bar{z}), with a symmetric form SabS_{ab} and conformal weights (1,1). We discuss in details how the Hilbert space of the LCFT decomposes onto representations of this algebra, and how this decomposition is related with properties of the finite spin-chain. We show that there is a complete correspondence between algebraic properties of finite periodic spin chains and the continuum limit. An important technical aspect of our analysis involves the fundamental new observation that the action of JTL_N in the gl(11)gl(1|1) spin chain is in fact isomorphic to an enveloping algebra of a certain Lie algebra, itself a non semi-simple version of sp(N2)sp(N-2). The semi-simple part of JTL_N is represented by Usp(N2)Usp(N-2), providing a beautiful example of a classical Howe duality, for which we have a non semi-simple version in the full JTL image represented in the spin-chain. On the continuum side, simple modules over the interchiral algebra S are identified with "fundamental" representations of sp()sp(\infty).Comment: 69 pp., 10 figs, v2: the paper has been substantially modified - new proofs, new refs, new App C with inductive limits construction, et
    corecore