16 research outputs found

    Cyclooxygenase-2 preserves flow-mediated remodelling in old obese Zucker rat mesenteric arteries

    Get PDF
    AIMS: Resistance arteries have a key role in the control of local blood flow and pressure, and chronic increases in blood flow induce endothelium-dependent outward hypertrophic remodelling. The incidence of metabolic syndrome increases with age, and the combination of these two risk factors impairs endothelium integrity, in part through an inflammatory process. We hypothesized that cyclooxygenase-2 (COX2) would affect remodelling in 12-month-old obese rats compared with young rats. METHODS AND RESULTS: Mesenteric arteries of obese and lean Zucker rats were alternatively ligated to generate high flow (HF) in the median artery. After 21 days, arteries were isolated for in vitro analysis. After 21 days, outward hypertrophic remodelling occurred in HF arteries in obese (498 +/- 20 vs. 443 +/- 18 mum intraluminal diameter in normal flow (NF) arteries, P < 0.01), but not in lean rats (454 +/- 17 vs. 432 +/- 14, NS; n = 12 per group). Endothelium-dependent (acetylcholine)-mediated relaxation (AMR) was lower in obese than in lean rats. AMR was reduced by NO-synthase blockade in all groups, and eNOS expression was higher in HF than in NF arteries without difference between lean and obese rats. Indomethacin further reduced AMR in HF arteries from obese rats only. Obesity increased COX2 immunostaining in mesenteric arteries. Acute COX2 inhibition (NS398) significantly reduced AMR in HF arteries from obese rats only, suggesting production of vasodilator prostanoid(s). In obese rats chronically treated with the COX2 inhibitor celecoxib, outward remodelling did not occur in HF arteries and AMR was improved without reaching the level found in lean rats. CONCLUSION: COX2 preserved in part flow-mediated arterial remodelling in old obese rats. Nevertheless, this effect was not sufficient to keep endothelium-dependent relaxation to the level obtained in lean rats

    Alteration in flow (shear stress)-induced remodelling in rat resistance arteries with aging: improvement by a treatment with hydralazine

    Get PDF
    AIMS: The link between aging and vascular diseases remains unclear, especially in resistance arteries. As a decreased vasodilator capacity of the endothelium is usually described in aging, we hypothesized that arteriolar remodelling in response to a chronic increase in blood flow might be altered. In addition, we tested the capacity of a vasodilator treatment with hydralazine to restore remodelling, as we have previously shown that hydralazine has a potent effect on the process. METHODS AND RESULTS: Mesenteric resistance arteries (350 microm diameter) from 3- and 24-month-old rats were exposed to high blood flow (HF) and normal blood flow (NF), for 2 weeks by sequential ligating second-order arteries in vivo. In HF arteries, diameter increased by 21% when intraluminal pressure was 100 mmHg, in association with a rise in superoxide production in young rats. On the other hand, both diameter and superoxide levels failed to increase in old rats. Hydralazine restored HF-induced remodelling in old rats in association with an increased superoxide production and a decreased superoxide dismutase (SOD) expression. The SOD-mimetic 4-hydroxy-2,2,6,6-tetramethyl piperidinoxyl (TEMPOL) prevented the effect of hydralazine on the arterial diameter. In old rats, hydralazine increased the arterial diameter in HF arteries without increasing eNOS expression. Furthermore, hydralazine also restored HF remodelling in eNOS knockout mice. CONCLUSION: Thus, flow remodelling in resistance arteries failed to occur in aging but it could be restored by hydralazine via a reactive oxygen species-dependent mechanism. These findings may have serious pathophysiological consequences in situations requiring flow-dependent remodelling such as ischaemic and metabolic diseases, more frequent in the elderly

    Determinants of flow-mediated outward remodeling in female rodents: respective roles of age, estrogens, and timing

    Get PDF
    OBJECTIVE: Flow (shear stress)-mediated outward remodeling (FMR) of resistance arteries is a key adaptive process allowing collateral growth after arterial occlusion but declining with age. 17-beta-estradiol (E2) has a key role in this process through activation of estrogen receptor alpha (ERalpha). Thus, we investigated the impact of age and timing for estrogen efficacy on FMR. APPROACH AND RESULTS: Female rats, 3 to 18 months old, were submitted to surgery to increase blood flow locally in 1 mesenteric artery in vivo. High-flow and normal-flow arteries were collected 2 weeks later for in vitro analysis. Diameter increased by 27% in high-flow arteries compared with normal-flow arteries in 3-month-old rats. The amplitude of remodeling declined with age (12% in 18-month-old rats) in parallel with E2 blood level and E2 substitution failed restoring remodeling in 18-month-old rats. Ovariectomy of 3-, 9-, and 12-month-old rats abolished FMR, which was restored by immediate E2 replacement. Nevertheless, this effect of E2 was absent 9 months after ovariectomy. In this latter group, ERalpha and endothelial nitric oxide synthase expression were reduced by half compared with age-matched rats recently ovariectomized. FMR did not occur in ERalpha(-/-) mice, whereas it was decreased by 50% in ERalpha(+/-) mice, emphasizing the importance of gene dosage in high-flow remodeling. CONCLUSIONS: E2 deprivation, rather than age, leads to decline in FMR, which can be prevented by early exogenous E2. However, delayed E2 replacement was ineffective on FMR, underlining the importance of timing of this estrogen action

    Involvement of angiotensin II in the remodeling induced by a chronic decrease in blood flow in rat mesenteric resistance arteries

    Get PDF
    Blood flow reduction induces inward remodeling of resistance arteries (RAs). This remodeling occurs in ischemic diseases, diabetes and hypertension. Nonetheless, the effect of flow reduction per se, independent of the effect of pressure or metabolic influences, is not well understood in RA. As angiotensin II is involved in the response to flow in RA, we hypothesized that angiotensin II may also be involved in the remodeling induced by a chronic flow reduction. We analyzed the effect of angiotensin I-converting enzyme inhibition (perindopril) and angiotensin II type 1 receptor blockade (candesartan) on inward remodeling induced by blood flow reduction in vivo in rat mesenteric RAs (low flow (LF) arteries). After 1 week, diameter reduction in LF arteries was associated with reduced endothelium-dependent relaxation and lower levels of eNOS expression. Superoxide production and extracellular signal-regulated kinases 1/2 (ERK1/2 phosphorylation were higher in LF than in normal flow arteries. Nevertheless, the absence of eNOS or superoxide level reduction (tempol or apocynin) did not prevent LF remodeling. Perindopril and candesartan prevented inward remodeling in LF arteries. Contractility to angiotensin II was reduced in LF vessels by perindopril, candesartan and the ERK1/2 blocker PD98059. ERK1/2 activation (ratio phospho-ERK/ERK) was higher in LF arteries, and this activation was prevented by perindopril and candesartan. ERK1/2 inhibition in vivo (U0126) prevented LF-induced diameter reduction. Thus, inward remodeling because of blood flow reduction in mesenteric RA depends on unopposed angiotensin II-induced contraction and ERK1/2 activation, independent of superoxide production. These findings might be of importance in the treatment of vascular disorders

    Reactive oxygen species and cyclooxygenase 2-derived thromboxane A2 reduce angiotensin II type 2 receptor vasorelaxation in diabetic rat resistance arteries

    Get PDF
    Angiotensin II has a key role in the control of resistance artery tone and local blood flow. Angiotensin II possesses 2 main receptors. Although angiotensin II type 1 receptor is well known and is involved in the vasoconstrictor and growth properties of angiotensin II, the role of the angiotensin II type 2 receptor (AT2R) remains much less understood. Although AT2R stimulation induces vasodilatation in normotensive rats, it induces vasoconstriction in pathological conditions involving oxidative stress and cyclooxygenase 2 expression. Thus, we studied the influence of cyclooxygenase 2 on AT2R-dependent tone in diabetes mellitus. Mesenteric resistance arteries were isolated from Zucker diabetic fatty (ZDF) and lean Zucker rats and studied using in vitro using wire myography. In ZDF rats, AT2R-induced dilation was lower than in lean rats (11% versus 21% dilation). Dilation in ZDF rats returned to the control (lean rats) level after acute superoxide reduction (Tempol and apocynin), cyclooxygenase 2 inhibition (NS398), or thromboxane A(2) synthesis inhibition (furegrelate). Cyclooxygenase 2 expression and superoxide production were significantly increased in ZDF rat arteries compared with arteries of lean rats. After chronic treatment with Tempol, AT2R-dependent dilation was equivalent in ZDF and lean rats. Chronic treatment of ZDF rats with NS398 also restored AT2R-dependent dilation to the control (lean rats) level. Plasma thromboxane B(2) (thromboxane A(2) metabolite), initially high in ZDF rats, was decreased by chronic Tempol and by chronic NS398 to the level found in lean Zucker rats. Thus, in type 2 diabetic rats, superoxide and thromboxane A(2) reduced AT2R-induced dilation. These findings are important to take into consideration when choosing vasoactive drugs for diabetic patients

    Microvascular vasodilator properties of the angiotensin II type 2 receptor in a mouse model of type 1 diabetes

    Get PDF
    Diabetes Mellitus is associated with severe cardiovascular disorders involving the renin-angiotensin system, mainly through activation of the angiotensin II type 1 receptor (AT1R). Although the type 2 receptor (AT2R) opposes the effects of AT1R, with vasodilator and anti-trophic properties, its role in diabetes is debatable. Thus we investigated AT2R-mediated dilatation in a model of type 1 diabetes induced by streptozotocin in 5-month-old male mice lacking AT2R (AT2R). Glucose tolerance was reduced and markers of inflammation and oxidative stress (cyclooxygenase-2, gp91phox p22phox and p67phox) were increased in AT2R mice compared to wild-type (WT) animals. Streptozotocin-induced hyperglycaemia was higher in AT2R than in WT mice. Arterial gp91phox and MnSOD expression levels in addition to blood 8-isoprostane and creatinine were further increased in diabetic AT2R mice compared to diabetic WT mice. AT2R-dependent dilatation in both isolated mesenteric resistance arteries and perfused kidneys was greater in diabetic mice than in non-diabetic animals. Thus, in type 1 diabetes, AT2R may reduce glycaemia and display anti-oxidant and/or anti-inflammatory properties in association with greater vasodilatation in mesenteric arteries and in the renal vasculature, a major target of diabetes. Therefore AT2R might represent a new therapeutic target in diabetes

    Testosterone Prevents Cutaneous Ischemia and Necrosis in Males Through Complementary Estrogenic and Androgenic Actions

    Get PDF
    OBJECTIVE: Chronic nonhealing wounds are a substantial medical concern and are associated with morbidity and mortality; thus, new treatment strategies are required. The first step toward personalized/precision medicine in this field is probably in taking sex differences into account. Impaired wound healing is augmented by ischemia, and we previously demonstrated that 17ÎČ-estradiol exerts a major preventive effect against ischemia-induced skin flap necrosis in female mice. However, the equivalent effects of testosterone in male mice have not yet been reported. We then investigated the role of steroid hormones in male mice using a skin flap ischemia model. APPROACH AND RESULTS: Castrated male mice developed skin necrosis after ischemia, whereas intact or castrated males treated with testosterone were equally protected. Testosterone can (1) activate the estrogen receptor after its aromatization into 17ÎČ-estradiol or (2) be reduced into dihydrotestosterone, a nonaromatizable androgen that activates the androgen receptor. We found that dihydrotestosterone protected castrated wild-type mice by promoting skin revascularization, probably through a direct action on resistance arteries, as evidenced using a complementary model of flow-mediated outward remodeling. 17ÎČ-estradiol treatment of castrated male mice also strongly protected them from ischemic necrosis through the activation of estrogen receptor-α by increasing skin revascularization and skin survival. Remarkably, 17ÎČ-estradiol improved skin survival with a greater efficiency than dihydrotestosterone. CONCLUSIONS: Testosterone provides males with a strong protection against cutaneous necrosis and acts through both its estrogenic and androgenic derivatives, which have complementary effects on skin survival and revascularization

    Heme oxygenase-1 induction restores high-blood-flow-dependent remodeling and endothelial function in mesenteric arteries of old rats

    Get PDF
    BACKGROUND: Aging is associated with reduced structural and functional adaptation to chronic changes in blood flow (shear stress) in small arteries. As heme oxygenase-1 (HO-1) is induced by hemodynamic forces in vascular smooth muscle and endothelial cells, we hypothesized that it might improve flow-dependent remodeling in aging. METHOD: First-order mesenteric arteries from 3 and 16-month-old rats were exposed to high, low, or normal flow by alternate ligation in vivo. Rats were treated with the HO-1 inducer, cobalt protoporphyrin (CoPP, 5 mg/kg) or vehicle. 14 days later, local blood flow was measured in vivo, and arteries were studied in vitro. RESULTS: Despite an equivalent change in blood flow, diameter enlargement in the high-flow arteries was blunted in old compared to young rats and was associated with decreased endothelium-dependent relaxation to acetylcholine. In old rats, HO-1 induction with CoPP restored outward remodeling, via a paradoxical reactive oxygen species-dependent mechanism, and was associated with a Mn-superoxide dismutase (SOD) overexpression, as well as a significant reduction of mitochondrial aconitase activity, used as a biomarker for oxidative stress. The heme oxygenase activity inhibitor, Sn-protoporphyrin, and the SOD-mimetic, TEMPOL, prevented the effect of CoPP on remodeling and oxidative status in old rats. Furthermore, HO-1 induction improved endothelial function, in association with increased endothelial nitric oxide synthase protein expression and phosphorylation (Ser-1177). In low-flow arteries, inward remodeling was unaffected by aging or by CoPP. Thus, in old rats, CoPP-induced up-regulation of HO-1 restored high-flow-dependent remodeling (diameter enlargement) and improved endothelial function in mesenteric arteries. CONCLUSION: This opens new perspectives in the treatment of ischemic diseases in aging

    Estrogens are needed for the improvement in endothelium-mediated dilation induced by a chronic increase in blood flow in rat mesenteric arteries

    Get PDF
    Resistance arteries play a key role in the control of local blood flow. They undergo outward remodeling in response to a chronic increase in blood flow as seen in collateral artery growth in ischemic disorders. We have previously shown that mesenteric artery outward remodeling depends on the endothelial estrogen receptor alpha. As outward arterial remodeling is associated with improved endothelium-dependent dilation, we hypothesized that estrogens might also play a role in flow-mediated improvement of endothelium-dependent dilation. Local increase in blood flow in first order mesenteric arteries was obtained after ligation of adjacent arteries in three-month old ovariectomized female rats treated with 17-beta-estradiol (OVX+E2) or vehicle (OVX). After 2 weeks, diameter was equivalent in high flow (HF) than in normal flow (NF) arteries with a greater wall to lumen ratio in HF vessels in OVX rats. Acetylcholine-mediated relaxation was lower in HF than in NF vessels. eNOS and caveolin-1 expression level was equivalent in HF and NF arteries. By contrast, arterial diameter was 30% greater in HF than in NF arteries and the wall to lumen ratio was not changed in OVX+E2 rats. Acetylcholine-mediated relaxation was higher in HF than in NF arteries. The expression level of eNOS was higher and that of caveolin-1 was lower in HF than in NF arteries. Acetylcholine (NO-dependent)-mediated relaxation was partly inhibited by the NO-synthesis blocker L-NAME in OVX rats whereas L-NAME blocked totally the relaxation in OVX+E2 rats. Endothelium-independent relaxation (sodium nitroprusside) was equivalent in OXV and OVX+E2 rats. Similarly, serotonin- and phenylephrine-mediated contractions were higher in HF than in NF arteries in both OVX and OVX+E2 rats in association with high ratio of phosphorylated ERK1/2 to ERK1/2. Thus, we demonstrated the essential role of endogenous E2 in flow-mediated improvement of endothelium (NO)-mediated dilatation in rat mesenteric arterie

    Resveratrol Improved Flow-Mediated Outward Arterial Remodeling in Ovariectomized Rats with Hypertrophic Effect at High Dose

    Get PDF
    OBJECTIVES: Chronic increases in blood flow in resistance arteries induce outward remodeling associated with increased wall thickness and endothelium-mediated dilatation. This remodeling is essential for collateral arteries growth following occlusion of a large artery. As estrogens have a major role in this remodeling, we hypothesized that resveratrol, described as possessing phytoestrogen properties, could improve remodeling in ovariectomized rats. METHODS: Blood flow was increased in vivo in mesenteric arteries after ligation of adjacent arteries in 3-month old ovariectomized rats treated with resveratrol (5 or 37.5 mg/kg per day: RESV5 or RESV37.5) or vehicle. After 2 weeks arterial structure and function were measured in vitro in high flow (HF) and normal flow (NF) arteries isolated from each rat. RESULTS: Arterial diameter was greater in HF than in NF arteries in ovariectomized rats treated with RESV5 or RESV37.5, not in vehicle-treated rats. In mice lacking estrogen receptor alpha diameter was equivalent in HF and NF arteries whereas in mice treated with RESV5 diameter was greater in HF than in NF vessels. A compensatory increase in wall thickness and a greater phenylephrine-mediated contraction were observed in HF arteries. This was more pronounced in HF arteries from RESV37.5-treated rats. ERK1/2 phosphorylation, involved in hypertrophy and contraction, were higher in RESV37.5-treated rats than in RESV5- and vehicle-treated rats. Endothelium-dependent relaxation was greater in HF than in NF arteries in RESV5-treated rats only. In HF arteries from RESV37.5-treated rats relaxation was increased by superoxide reduction and markers of oxidative stress (p67phox, GP91phox) were higher than in the 2 other groups. CONCLUSION: Resveratrol improved flow-mediated outward remodeling in ovariectomized rats thus providing a potential therapeutic tool in menopause-associated ischemic disorders. This effect seems independent of the estrogen receptor alpha. Nevertheless, caution should be taken with high doses inducing excessive contractility and hypertrophy in association with oxidative stress in HF arteries
    corecore