330 research outputs found

    Signals of Supersymmetric Flavour Models in B Physics

    Get PDF
    If the mechanism of Supersymmetry breaking is not flavour blind, some flavour symmetry is likely to be needed to prevent excessive flavour changing neutral current effects. We discuss two flavour models (based respectively on a U(2) and on a SU(3) horizontal symmetry) providing a good fit to fermion masses and mixings and particularly constraining the supersymmetry soft breaking terms. We show that, while reproducing successfully the Standard Model fit of the unitarity triangle, it is possible to obtain sizable deviations from the Standard Model predictions for three very clean B-physics observables: the time dependent CP asymmetries in BdJ/ψK0B_d \to J/\psi K^0 and in BsJ/ψϕB_s \to J/\psi \phi and the BsBˉsB_s-\bar{B}_s mass difference. Our analysis exhibits with two explicit realizations that in supersymmetric theories with a new flavour structure in addition to the Yukawa matrices there exist concrete potentialities for revealing supersymmetry indirectly in theoretically clean BB-physics observables.Comment: 18 pages, 7 figures, 3 of which in colo

    Self-consistent Green's function approaches

    Full text link
    We present the fundamental techniques and working equations of many-body Green's function theory for calculating ground state properties and the spectral strength. Green's function methods closely relate to other polynomial scaling approaches discussed in chapters 8 and 10. However, here we aim directly at a global view of the many-fermion structure. We derive the working equations for calculating many-body propagators, using both the Algebraic Diagrammatic Construction technique and the self-consistent formalism at finite temperature. Their implementation is discussed, as well as the inclusion of three-nucleon interactions. The self-consistency feature is essential to guarantee thermodynamic consistency. The pairing and neutron matter models introduced in previous chapters are solved and compared with the other methods in this book.Comment: 58 pages, 14 figures, Submitted to Lect. Notes Phys., "An advanced course in computational nuclear physics: Bridging the scales from quarks to neutron stars", M. Hjorth-Jensen, M. P. Lombardo, U. van Kolck, Editor

    Searching for TeV dark matter by atmospheric Cerenkov techniques

    Full text link
    There is a growing interest in the possibility that dark matter could be formed of weakly interacting particles with a mass in the 100 GeV - 2 TeV range, and supersymmetric particles are favorite candidates. If they constitute the dark halo of our Galaxy, their mutual annihilations produce energetic gamma rays that could be detected using existing atmospheric \u{C}erenkov techniques.Comment: 10 pp, LaTex (3 figures available by e-mail) PAR-LPTHE 92X

    B --> Phi K_S and Supersymmetry

    Full text link
    The rare decay B --> Phi K_S is a well-known probe of physics beyond the Standard Model because it arises only through loop effects yet has the same time-dependent CP asymmetry as B --> Psi K_S. Motivated by recent data suggesting new physics in B --> Phi K_S, we look to supersymmetry for possible explanations, including contributions mediated by gluino loops and by Higgs bosons. Chirality-preserving LL and RR gluino contributions are generically small, unless gluinos and squarks masses are close to the current lower bounds. Higgs contributions are also too small to explain a large asymmetry if we impose the current upper limit on B(B_s --> mu mu). On the other hand, chirality-flipping LR and RL gluino contributions can provide sizable effects and while remaining consistent with related results in B --> Psi K_S, Delta M_s, B --> X_s gamma and other processes. We discuss how the LR and RL insertions can be distinguished using other observables, and we provide a string-based model and other estimates to show that the needed sizes of mass insertions are reasonable.Comment: 33 pages, 32 figures, Updated version for PRD. Includes discussions of other recent works on this topic. Added discussions & plots for gluino mass dependence and effects of theoretical uncertaintie

    Possible astrophysical signatures of heavy stable neutral relics in supergravity models

    Get PDF
    We consider heavy stable neutral particles in the context of supergravity and show that a gravitationally suppressed inflaton decay can produce such particles in cosmologically interesting abundances within a wide mass range 103GeVmX1011GeV10^3 {\rm GeV} \leq m_X \leq 10^{11} {\rm GeV}. In gravity-mediated supersymmetry breaking models, a heavy particle can decay into its superpartner and a photon-photino pair or a gravitino. Such decays only change the identity of a possible dark matter candidate. However, for 103GeVmX107GeV10^3 {\rm GeV} \leq m_X \leq 10^7 {\rm GeV}, astrophysical bounds from gamma-ray background and photodissociation of light elements can be more stringent than the overclosure bound, thus ruling out the particle as a dark matter candidate.Comment: 12 page

    Exploring flavor structure of supersymmetry breaking from rare B decays and unitarity triangle

    Full text link
    We study effects of supersymmetric particles in various rare B decay processes as well as in the unitarity triangle analysis. We consider three different supersymmetric models, the minimal supergravity, SU(5) SUSY GUT with right-handed neutrinos, and the minimal supersymmetric standard model with U(2) flavor symmetry. In the SU(5) SUSY GUT with right-handed neutrinos, we consider two cases of the mass matrix of the right-handed neutrinos. We calculate direct and mixing-induced CP asymmetries in the b to s gamma decay and CP asymmetry in B_d to phi K_S as well as the B_s--anti-B_s mixing amplitude for the unitarity triangle analysis in these models. We show that large deviations are possible for the SU(5) SUSY GUT and the U(2) model. The pattern and correlations of deviations from the standard model will be useful to discriminate the different SUSY models in future B experiments.Comment: revtex4, 36 pages, 10 figure

    KK Parity in Warped Extra Dimension

    Get PDF
    We construct models with a Kaluza-Klein (KK) parity in a five- dimensional warped geometry, in an attempt to address the little hierarchy problem present in setups with bulk Standard Model fields. The lightest KK particle (LKP) is stable and can play the role of dark matter. We consider the possibilities of gluing two identical slices of 5D AdS in either the UV (IR-UV-IR model) or the IR region (UV-IR-UV model) and discuss the model-building issues as well as phenomenological properties in both cases. In particular, we find that the UV-IR-UV model is not gravitationally stable and that additional mechanisms might be required in the IR-UV-IR model in order to address flavor issues. Collider signals of the warped KK parity are different from either the conventional warped extra dimension without KK parity, in which the new particles are not necessarily pair-produced, or the KK parity in flat universal extra dimensions, where each KK level is nearly degenerate in mass. Dark matter and collider properties of a TeV mass KK Z gauge boson as the LKP are discussed.Comment: 35 pages, 11 figure

    Constraints on Large Extra Dimensions with Bulk Neutrinos

    Full text link
    We consider right-handed neutrinos propagating in δ\delta (large) extra dimensions, whose only coupling to Standard Model fields is the Yukawa coupling to the left-handed neutrino and the Higgs boson. These theories are attractive as they can explain the smallness of the neutrino mass, as has already been shown. We show that if δ\delta is bigger than two, there are strong constraints on the radius of the extra dimensions, resulting from the experimental limit on the probability of an active state to mix into the large number of sterile Kaluza-Klein states of the bulk neutrino. We also calculate the bounds on the radius resulting from requiring that perturbative unitarity be valid in the theory, in an imagined Higgs-Higgs scattering channel.Comment: 24 pages, 4 figures, revtex4. v2: Minor typos corrected, references adde

    Gluino Contribution to Radiative B Decays: Organization of QCD Corrections and Leading Order Results

    Get PDF
    The gluino-induced contributions to the decay b-> s gamma are investigated in supersymmetric frameworks with generic sources of flavour violation. It is shown that, when QCD corrections are taken into account, the relevant operator basis of the Standard Model effective Hamiltonian gets enlarged to contain: i) magnetic and chromomagnetic operators with a factor of alpha_s and weighted by a quark mass m_b or m_c; ii) magnetic and chromomagnetic operators of lower dimensionality, also containing alpha_s; iii) four-quark operators weighted by a factor alpha_s^2. Numerical results are given, showing the effects of the leading order QCD corrections on the inclusive branching ratio for b-> s gamma. Constraints on supersymmetric sources of flavour violation are derived.Comment: 36 pages including 16 postscript figures; uses epsf; journal version: one ref. added; rephrasing of a couple of paragraph

    The renormalization group inspired approaches and estimates of the tenth-order corrections to the muon anomaly in QED

    Get PDF
    We present the estimates of the five-loop QED corrections to the muon anomaly using the scheme-invariant approaches and demonstrate that they are in good agreement with the results of exact calculations of the corresponding tenth-order diagrams supplemented by the additional guess about the values of the non-calculated contributions.Comment: LATEX 15 pages, figures available upon request; preprint CERN-TH.7518/9
    corecore