48 research outputs found

    Hydrogeochemical Assessment of Groundwater in Neyveli Basin, Cuddalore District, South India

    Get PDF
    In the light of progressive depletion of groundwater reservoir and water quality deterioration of the Neyveli basin, an investigation on dissolved major constituents in 25 groundwater samples was performed. The main objective was detection of processes for the geochemical assessment throughout the area. Neyveli aquifer is intensively inhabited during the last decenniums, leading to expansion of the residential and agricultural area. Besides semi-aridity, rapid social and economic development stimulates greater demand for water, which is gradually fulfilled by groundwater extraction. Groundwaters of the study area are characterized by the dominance of Na + K over Ca + Mg.HCO3 was found to be the dominant anion followed by Cl and SO4. High positive correlation was obtained among the following ions: Ca–Mg, Cl–Ca,Mg, Na–K, HCO3–H4SiO4, and F–K. The hydrochemical types in the area can be divided into two major groups: the first group includes mixed Ca–Mg–Cl and Ca–Cl types. The second group comprises mixed Ca–Na–HCO3 and Ca–HCO3 types. Most of the groundwater samples are within the permissible limit of WHO standard. Interpretation of data suggests that weathering, ion exchange reactions, and evaporation to some extent are the dominant factors that determine the major ionic composition in the study area

    Irrigation Water Quality Assessment Using Water Quality Index and GIS Technique in Pondicherry Region, South India

    Get PDF
    The utility of groundwater, irrespective of its availability, is essential for mankind. The efficacy of the coastal aquifer’s groundwater quality for agriculture purpose in the Pondicherry region was gauged by their hydrochemistry. 44 groundwater samples were collected during 4 different seasons namely, pre-monsoon (PRM), southwest monsoon (SWM), northeast monsoon (NEM) and post-monsoon (POM). The samples were measured for physico-chemical parameters like pH, EC, TDS, Na, K, Ca, Mg, Cl, HCO3, PO4, SO4 and NO3. The spatio temporal variations of EC indicates that the coastal groundwater were relatively saline except during PRM. The suitability of groundwater for irrigation is evaluated through various water quality parametrs such as Electrical Conductivity (EC), pH, Na%, sodium absorption ratio (SAR), residual sodium carbonate (RSC) and permeability index (PI). Na%, SAR, PI and EC values were spatially interporlated and integrated to determine the regions suitable for irrigation purpose. The study infers that the groundwater of the study area is suitable for irrigation except few samples’ locations along the western part, as they have attained an alarming stage and they are unsuitable for irrigation. Thus, proper management strategy for irrigation water source has to be developed and a preventive management practice to address this issue has to be implemented

    Identifying climate change information needs for the himalayan region: Results from the GLACINDIA Stakeholder Workshop and Training Program

    Get PDF
    Here we present results of a workshop designed to bring together stakeholders from different states of the Indian side of the Himalayan arc and an international group of climate scientists in order to discuss how climate change research for this region can be tailored toward the needs of local communities. The stakeholder workshop was jointly organized by the Jawaharlal Nehru University (JNU), New Delhi, India, and the Climate Service Center 2.0, Hamburg, Germany, within the framework of the multidisciplinary international research project GLACINDIA. The project focuses on the water-related effects of changes in glacier mass balance and river runoff in western Himalayas. Given the research focus of the GLACINDIA project, the initial focus of the workshop was on glacier-related hydrological information. During stakeholder interactions the resulting discussion covered a much broader range of urgent climate change information needs for the Himalayan region.publishedVersio

    Stable isotopic signatures in precipitation of 2006 southwest monsoon of Tamil Nadu

    Get PDF
    Southwest monsoon (SWM) controls the majority ofthe agricultural activities in Tamil Nadu (TN), though the amount of rainfall received due to this is relatively less. The nature and behaviour of water vapour over TN reveal the other dynamic processes that are in operation during this period of the year. Hence, the stable isotope signatures of d 18O and dD obtained here were used to derive the first local meteoric water line for the State with SWM precipitation. The d-excess parameter was also used in conjunction and it was found that three dominant processes were in operation during this period: (i) vapours from southeast Arabian Sea, (ii) local evaporating vapours from inland tanks and (iii) vapours from the Indian Ocean

    A two-domain folding intermediate of RuBisCO in complex with the GroEL chaperonin

    Get PDF
    The chaperonins (GroEL and GroES in Escherichia coli) are ubiquitous molecular chaperones that assist a subset of essential substrate proteins to undergo productive folding to the native state. Using single particle cryo EM and image processing we have examined complexes of E. coli GroEL with the stringently GroE-dependent substrate enzyme RuBisCO from Rhodospirillum rubrum. Here we present snapshots of non-native RuBisCO - GroEL complexes. We observe two distinct substrate densities in the binary complex reminiscent of the two-domain structure of the RuBisCO subunit, so that this may represent a captured form of an early folding intermediate. The occupancy of the complex is consistent with the negative cooperativity of GroEL with respect to substrate binding, in accordance with earlier mass spectroscopy studies. [Abstract copyright: Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

    Self- generated disorder and structural glass formation in homopolymer globules

    Full text link
    We have investigated the interrelation between the spin glasses and the structural glasses. Spin glasses in this case are random magnets without reflection symmetry (e.g. pp - spin interaction spin glasses and Potts glasses) which contain quenched disorder, whereas the structural glasses are here exemplified by the homopolymeric globule, which can be viewed as a liquid of connected molecules on nano scales. It is argued that the homopolymeric globule problem can be mapped onto a disorder field theoretical model whose effective Hamiltonian resembles the corresponding one for the spin glass model. In this sense the disorder in the globule is self - generated (in contrast to spin glasses) and can be related with competitive interactions (virial coefficients of different signs) and the chain connectivity. The work is aimed at giving a quantitative description of this analogy. We have investigated the phase diagram of the homopolymeric globule where the transition line from the liquid to glassy globule is treated in terms of the replica symmetry breaking paradigm. The configurational entropy temperature dependence is also discussed.Comment: 22 pages, 4 figures, submitted to Phys. Rev.

    Dynamic nuclear polarization and spin-diffusion in non-conducting solids

    Full text link
    There has been much renewed interest in dynamic nuclear polarization (DNP), particularly in the context of solid state biomolecular NMR and more recently dissolution DNP techniques for liquids. This paper reviews the role of spin diffusion in polarizing nuclear spins and discusses the role of the spin diffusion barrier, before going on to discuss some recent results.Comment: submitted to Applied Magnetic Resonance. The article should appear in a special issue that is being published in connection with the DNP Symposium help in Nottingham in August 200

    Superfluid rotation sensor with helical laser trap

    Full text link
    The macroscopic quantum states of the dilute bosonic ensemble in helical laser trap at the temperatures about 106K10^{-6}\bf {K} are considered in the framework of the Gross-Pitaevskii equation. The helical interference pattern is composed of the two counter propagating Laguerre-Gaussian optical vortices with opposite orbital angular momenta \ell \hbar and this pattern is driven in rotation via angular Doppler effect. Macroscopic observables including linear momentum and angular momentum of the atomic cloud are evaluated explicitly. It is shown that rotation of reference frame is transformed into translational motion of the twisted matter wave. The speed of translation equals the group velocity of twisted wavetrain Vz=Ω/kV_z= \Omega\ell/ k and alternates with a sign of the frame angular velocity Ω\Omega and helical pattern handedness \ell. We address detection of this effect using currently accessible laboratory equipment with emphasis on the difference between quantum and classical fluids.Comment: 8 pages, 3 figures, accepted to publication Journ.Low Temp.Phy

    Bio-analytical Assay Methods used in Therapeutic Drug Monitoring of Antiretroviral Drugs-A Review

    Get PDF
    corecore