73 research outputs found

    Entropy and Wigner Functions

    Full text link
    The properties of an alternative definition of quantum entropy, based on Wigner functions, are discussed. Such definition emerges naturally from the Wigner representation of quantum mechanics, and can easily quantify the amount of entanglement of a quantum state. It is shown that smoothing of the Wigner function induces an increase in entropy. This fact is used to derive some simple rules to construct positive definite probability distributions which are also admissible Wigner functionsComment: 18 page

    Chaos and Quantum-Classical Correspondence via Phase Space Distribution Functions

    Full text link
    Quantum-classical correspondence in conservative chaotic Hamiltonian systems is examined using a uniform structure measure for quantal and classical phase space distribution functions. The similarities and differences between quantum and classical time-evolving distribution functions are exposed by both analytical and numerical means. The quantum-classical correspondence of low-order statistical moments is also studied. The results shed considerable light on quantum-classical correspondence.Comment: 16 pages, 5 figures, to appear in Physical Review

    Intrinsic decoherence and classical-quantum correspondence in two coupled delta-kicked rotors

    Get PDF
    We show that classical-quantum correspondence of center of mass motion in two coupled delta-kicked rotors can be obtained from intrinsic decoherence of the system itself which occurs due to the entanglement of the center of mass motion to the internal degree of freedom without coupling to external environment

    General impossible operations in quantum information

    Full text link
    We prove a general limitation in quantum information that unifies the impossibility principles such as no-cloning and no-anticloning. Further, we show that for an unknown qubit one cannot design a universal Hadamard gate for creating equal superposition of the original and its complement state. Surprisingly, we find that Hadamard transformations exist for an unknown qubit chosen either from the polar or equatorial great circles. Also, we show that for an unknown qubit one cannot design a universal unitary gate for creating unequal superpositions of the original and its complement state. We discuss why it is impossible to design a controlled-NOT gate for two unknown qubits and discuss the implications of these limitations.Comment: 15 pages, no figures, Discussion about personal quantum computer remove

    Environment-Induced Decoherence and the Transition From Quantum to Classical

    Get PDF
    We study dynamics of quantum open systems, paying special attention to those aspects of their evolution which are relevant to the transition from quantum to classical. We begin with a discussion of the conditional dynamics of simple systems. The resulting models are straightforward but suffice to illustrate basic physical ideas behind quantum measurements and decoherence. To discuss decoherence and environment-induced superselection einselection in a more general setting, we sketch perturbative as well as exact derivations of several master equations valid for various systems. Using these equations we study einselection employing the general strategy of the predictability sieve. Assumptions that are usually made in the discussion of decoherence are critically reexamined along with the ``standard lore'' to which they lead. Restoration of quantum-classical correspondence in systems that are classically chaotic is discussed. The dynamical second law -it is shown- can be traced to the same phenomena that allow for the restoration of the correspondence principle in decohering chaotic systems (where it is otherwise lost on a very short time-scale). Quantum error correction is discussed as an example of an anti-decoherence strategy. Implications of decoherence and einselection for the interpretation of quantum theory are briefly pointed out.Comment: 80 pages, 7 figures included, Lectures given by both authors at the 72nd Les Houches Summer School on "Coherent Matter Waves", July-August 199

    Environment-induced dynamical chaos

    Get PDF
    We examine the interplay of nonlinearity of a dynamical system and thermal fluctuation of its environment in the ``physical limit'' of small damping and slow diffusion in a semiclassical context and show that the trajectories of c-number variables exhibit dynamical chaos due to the thermal fluctuations of the bath.Comment: Revtex, 4 pages and 4 figure

    Qubit Disentanglement and Decoherence via Dephasing

    Full text link
    We consider whether quantum coherence in the form of mutual entanglement between a pair of qubits is susceptible to decay that may be more rapid than the decay of the coherence of either qubit individually. An instance of potential importance for solid state quantum computing arises if embedded qubits (spins, quantum dots, Cooper pair boxes, etc.) are exposed to global and local noise at the same time. Here we allow separate phase-noisy channels to affect local and non-local measures of system coherence. We find that the time for decay of the qubit entanglement can be significantly shorter than the time for local dephasing of the individual qubits.Comment: REVTeX, 9 pages, 1 figure, v2 with minor changes, reference adde

    Trajectory versus probability density entropy

    Full text link
    We study the problem of entropy increase of the Bernoulli-shift map without recourse to the concept of trajectory and we discuss whether, and under which conditions if it does, the distribution density entropy coincides with the Kolmogorov-Sinai entropy, namely, with the trajectory entropy.Comment: 24 page

    Fluctuation-dissipation relationship in chaotic dynamics

    Full text link
    We consider a general N-degree-of-freedom dissipative system which admits of chaotic behaviour. Based on a Fokker-Planck description associated with the dynamics we establish that the drift and the diffusion coefficients can be related through a set of stochastic parameters which characterize the steady state of the dynamical system in a way similar to fluctuation-dissipation relation in non-equilibrium statistical mechanics. The proposed relationship is verified by numerical experiments on a driven double well system.Comment: Revtex, 23 pages, 2 figure
    corecore