In this paper we study the quantum Zeno effect using the irreversible model
of the measurement. The detector is modeled as a harmonic oscillator
interacting with the environment. The oscillator is subjected to the force,
proportional to the energy of the measured system. We use the Lindblad-type
master equation to model the interaction with the environment. The influence of
the detector's temperature on the quantum Zeno effect is obtained. It is shown
that the quantum Zeno effect becomes stronger (the jump probability decreases)
when the detector's temperature increases