1,944 research outputs found
Cable Design for FAIR SIS 300
GSI, Darmstadt is preparing to build FAIR (Facility for Antiproton and Ion Research) which include SIS 300, a 300T - m fast-ramping heavy ion synchrotron. Dipoles for this ring will be 2.9 m long, producing 6 T over a 100 mm coil aperture and ramped at 1 T/s. The cable for these dipoles must have low losses and produce acceptable field distortions during the fast ramp. We plan to achieve this objective by using fine (~ 3 mum) filaments of NbTi in a wire with an interfilamentary matrix of CuMn to reduce proximity coupling and increase the transverse resistivity. The Rutherford cable have a thin stainless steel core and the wires will be coated with SnAg solder which has been oxidized, using a recipe similar to that developed at CERN, to increase the adjacent strand resistance Ra. Measurements of crossover strand resistance Re and Ra in cored cable with oxidized SnAg coating will be presented, together with data on critical current, persistent current magnetization and eddy current coupling in a wire with ultra fine filaments and a CuMn matrix in the interfilamentary region of the wire. These data will be used to predict losses and field distortion in the SIS 300 dipole and optimize the final design of cable for FAIR
Antibodies to glycans dominate the host response to schistosome larvae and eggs: Is their role protective or subversive?
Multiple exposures of chimpanzees to the radiation-attenuated schistosome vaccine provoked a strong parasite-specific cellular and humoral immune response. Specific IgM and IgG were directed mainly against glycans on antigens released by cercariae; these were also cross-reactive with soluble antigens from larvae, adult worms, and eggs. Egg deposition was the major antigenic stimulus after challenge of vaccinated and control chimpanzees with normal parasites, eliciting strong antiglycan responses to egg secretions. Glycan epitopes recognized included LacdiNAc, fucosylated LacdiNAc, LewisX (weakly), and those on keyhole limpet hemocyanin. Antibodies to peptide epitopes became prominent only during the chronic phase of infection, as glycan-specific IgM and IgG decreased. Because of their intensity and cross-reactivity, the antiglycan responses resulting from infection could be a smoke screen to subvert the immune system away from more vulnerable larval peptide epitopes. Their occurrence in humans might explain the long time required for antischistosome immunity to build up after infection
Cored Rutherford cables for the GSI fast ramping synchrotron
The new heavy ion synchrotron facility proposed by GSI will have two superconducting magnet rings in the same tunnel, with rigidities of 200 T/spl middot/m and 100 T/spl middot/m. Fast ramp times are needed, which can cause significant problems for the magnets, particularly in the areas of ac loss and field distortion. This paper discusses the 200 T/spl middot/m ring, which will use Cos/spl theta/ magnets based on the RHIC dipole design. We discuss the reasons for choosing Rutherford cable with a resistive core and report loss measurements carried out on cable samples. These measurements are compared with theoretical calculations using measured values of inter-strand resistance. Reasonably good agreement is found, but there are indications of nonuniformity in the adjacent resistance R/sub a/. Using these measured parameters, losses and temperature rise are calculated for a RHIC dipole in the operating cycle of the accelerator. A novel insulation scheme designed to promote efficient cooling is described
Current-density functional for disordered systems
The effective action for the current and density is shown to satisfy an
evolution equation, the functional generalization of Callan-Symanzik equation.
The solution describes the dependence of the one-particle irreducible vertex
functions on the strength of the quenched disorder and the annealed Coulomb
interaction. The result is non-perturbative, no small parameter is assumed. The
a.c. conductivity is obtained by the numerical solution of the evolution
equation on finite lattices in the absence of the Coulomb interaction. The
static limit is performed and the conductivity is found to be vanishing beyond
a certain threshold of the impurity strength.Comment: final version, 28 pages, 17 figures, to appear in Phys. Rev.
Crossover between ionic/covalent and pure ionic bonding in magnesium oxyde clusters
An empirical potential with fluctuating charges is proposed for modelling
(MgO)_n clusters in both the molecular (small n) and bulk (n->infty) regimes.
Vectorial polarization forces are explicitely taken into account in the
self-consistent determination of the charges. Our model predicts cuboid cluster
structures, in agreement with previous experimental and theoretical results.
The effective charge transferred between magnesium and oxygen smoothly
increases from 1 to 2, with an estimated crossover size above 300 MgO
molecules
Effective action and density functional theory
The effective action for the charge density and the photon field is proposed
as a generalization of the density functional. A simple definition is given for
the density functional, as the functional Legendre transform of the generator
functional of connected Green functions for the density and the photon field,
offering systematic approximation schemes. The leading order of the
perturbation expansion reproduces the Hartree-Fock equation. A renormalization
group motivated method is introduced to turn on the Coulomb interaction
gradually and to find corrections to the Hartree-Fock and the Kohn-Sham
schemes.Comment: New references and a numerical algorithm added, to appear in Phys.
Rev. B. 30 pages, no figure
Electrically pumped single-defect light emitters in WSe
Recent developments in fabrication of van der Waals heterostructures enable new type of devices assembled by stacking atomically thin layers of two-dimensional materials. Using this approach, we fabricate light-emitting devices based on a monolayer WSe, and also comprising boron nitride tunnelling barriers and graphene electrodes, and observe sharp luminescence spectra from individual defects in WSe under both optical and electrical excitation. This paves the way towards the realization of electrically-pumped quantum emitters in atomically thin semiconductors. In addition we demonstrate tuning by more than 1 meV of the emission energy of the defect luminescence by applying a vertical electric field. This provides an estimate of the permanent electric dipole created by the corresponding electron-hole pair. The light-emitting devices investigated in our work can be assembled on a variety of substrates enabling a route to integration of electrically pumped single quantum emitters with existing technologies in nano-photonics and optoelectronics
Site 1222
Site 1222 (13°48.98´N, 143°53.35´W; 4989 meters below sea level [mbsl]; Fig. F1) forms a south-central component of the 56-Ma transect drilled during Leg 199 and is situated ~2° south of the Clarion Fracture Zone in typical abyssal hill topography. On the basis of regional magnetic anomalies, we anticipated basement age at Site 1222 to be equivalent to Chron C25r or Chron C25n (~56-57 Ma) (Cande et al., 1989), which is slightly older than at Site 1219. At the outset of drilling at Site 1222, our estimate for total sediment thickness was ~115 m (Fig. F2).
Based upon a fixed hotspot model (Gripp and Gordon, 1990, for 0- to 5-Ma Pacific hotspot rotation pole; Engebretson et al., 1985, for older poles) Site 1222 should have been located ~1° north of the equator at 56 Ma and ~4°N at 40 Ma. A nearby gravity core (EW9709-17GC), taken during the site survey cruise, recovered >5 m of red clay with a late-middle Miocene age on the basis of radiolarian biostratigraphy (Lyle, 2000). Deep Sea Drilling Project (DSDP) Site 42 located ~4° east of Site 1222, was not drilled to basement but contains a thin sedimentary section (~100 m thick) of upper Oligocene nannofossil ooze through middle Eocene radiolarian nannofossil ooze. In turn, DSDP Site 162 lies ~1° north of DSDP Site 42 and is situated on young crust (49 Ma) that contains ~150 m of clayey radiolarian and nannofossil oozes of early Oligocene-middle Eocene age.
Site 1222 will be used to study the position of the Intertropical Convergence Zone in the late Eocene and Oligocene, to sample late Paleocene and early Eocene sediments in the central tropical Pacific Ocean, and to help determine whether or not there has been significant southward movement of the hotspots with respect to the spin axis prior to 40 Ma
Site 1220
Site 1220 (10°10.600´N, 142°45.503´W; 5218 meters below sea level (mbsl); Fig. F1) forms a southerly component of the 56-Ma transect drilled during Leg 199. It is situated about midway between the Clipperton and Clarion Fracture Zones in typical abyssal hill topography. On the basis of regional magnetic anomalies, we anticipated basement age at Site 1220 to be equivalent to Chron C25n (~56 Ma; Cande et al., 1989), slightly older than at Site 1219. At the outset of drilling at Site 1220, our estimate for total sediment depth was ~225 meters below seafloor (mbsf) (Fig. F2).
Based upon a fixed hotspot model (Gripp and Gordon, 1990, for 0- to 5-Ma Pacific hotspot rotation pole; Engebretson et al., 1985, for older poles), Site 1220 should have been located ~3° south of the equator at 56 Ma and in an equatorial position at 40 Ma. Thus, Site 1220 should have been situated underneath the South Equatorial Current in the early Eocene. A nearby piston core (EW9709-13PC) taken during the site survey cruise recovered >16 m of red clay, with the base of the core dated as middle-early Miocene on the basis of radiolarian biostratigraphy (Lyle, 2000).
Site 1220 will be used to study equatorial ocean circulation from the late Paleocene through the late Eocene during the early Cenozoic thermal maximum. Sediment records from this site will help to define the calcite compensation depth (CCD) and lysocline during the Paleocene-Eocene and Eocene-Oligocene transitions. In this and other respects, Site 1220 will act as an interesting analog to Site 1218. Both sites are thought to have been located on the equator at ~40 Ma, but the older crustal age anticipated at Site 1220 dictates a greater paleowater depth than for contemporaneous sediments accumulating at Site 1218
Site 1216
Site 1216 (21°27.16´N, 139°28.79´W; 5152 meters below sea level [mbsl]; Fig. F1) is situated in abyssal hill topography south of the Molokai Fracture Zone and two small associated unnamed parasitic fracture zones (Fig. F2). Based on magnetic lineations, Site 1216 appears to be situated on normal ocean crust formed during the C25r magnetic anomaly (~57 Ma; Atwater and Severinghaus, 1989). Site 1216 was chosen for drilling because it is near the thickest section of lower Eocene sediments along the 56-Ma transect, which was based upon the seismic stratigraphy of seismic reflection data acquired on site survey cruise EW9709 during transits between the proposed drill sites (Lyle et al., this volume; Moore et al., 2002). The Cenozoic history of sedimentation in this region was poorly constrained prior to Leg 199, being largely based on two Deep Sea Drilling Project (DSDP) drill sites (40 and 41) and piston core data (EW9709-3PC) from ~1.5° in latitude to the south. Based on data from these drill sites, we expected the sedimentary sequence at Site 1216 to comprise red clays (a mixture of wind-blown dust and authigenic precipitates) overlying a biogenic sediment section composed of an upper middle Eocene radiolarian ooze and lower carbonate ooze deposited when the site was near the ridge crest in the late Paleocene and early Eocene.
The broad paleoceanographic objectives of drilling the sedimentary sequence anticipated at Site 1216 are as follows: (1) to help define the shift in the Intertropical Convergence Zone through the Paleogene by following the change in eolian-dust composition and flux through time (red clays) and (2) to help define the latitudinal extent, composition, and mass accumulation of plankton communities in the north equatorial Pacific region thereby constraining ocean circulation patterns and the extent of the equatorial high-productivity belt in the Eocene ocean.
Results from Site 1216 will also provide important information to test whether there was significant motion of the Hawaiian hotspot with respect to the Earth's spin axis during the early Cenozoic. At 56 Ma, the backtracked location of Site 1216 based upon a hotspot reference frame (Gripp and Gordon, 1990, for 0- to 5-Ma Pacific hotspot rotation pole; Engebretson et al., 1985, for older poles) is about 9°N, 108°W. If significant hotspot motion or true polar wander occurred since 57 Ma (Petronotis et al., 1994), this drill site could have been much nearer to the equator
- …