7 research outputs found

    Tissue culture of ornamental cacti

    Get PDF
    Cacti species are plants that are well adapted to growing in arid and semiarid regions where the main problem is water availability. Cacti have developed a series of adaptations to cope with water scarcity, such as reduced leaf surface via morphological modifications including spines, cereous cuticles, extended root systems and stem tissue modifications to increase water storage, and crassulacean acid metabolism to reduce transpiration and water loss. Furthermore, seeds of these plants very often exhibit dormancy, a phenomenon that helps to prevent germination when the availability of water is reduced. In general, cactus species exhibit a low growth rate that makes their rapid propagation difficult. Cacti are much appreciated as ornamental plants due to their great variety and diversity of forms and their beautiful short-life flowers; however, due to difficulties in propagating them rapidly to meet market demand, they are very often over-collected in their natural habitats, which leads to numerous species being threatened, endangered or becoming extinct. Therefore, plant tissue culture techniques may facilitate their propagation over a shorter time period than conventional techniques used for commercial purposes; or may help to recover populations of endangered or threatened species for their re-introduction in the wild; or may also be of value to the preservation and conservation of the genetic resources of this important family. Herein we present the state-of-the-art of tissue culture techniques used for ornamental cacti and selected suggestions for solving a number of the problems faced by members of the Cactaceae family

    A highly efficient in vitro propagation protocol for elephant tusk cactus: Coryphantha elephantidens (Lem.) Lem.

    Get PDF
    Background: Elephant tusk cactus Coryphantha elephantidens (Lem.) Lem. is an important attractive ornamental cactus. The plant produces offshoots from tubercles very rarely, and the seedlings exhibit slow growth and susceptibility to damping off. Slow growth and high demand in the cactus industry lead to finding an alternate fast propagation method. Results: An innovative in vitro technique based on axillary bud proliferation has been developed for an ornamental cactus C. elephantidens (Lem.) Lem. Four different explant types formed multiple shoots on Murashige and Skoog (MS) medium. Of the two cytokinins, 6-Benzylaminopurine (BAP) and Kinetin (KN), BAP proved to be more effective for multiple shoot induction and shoot growth from different explant types. Longitudinally cut stem explants, when cultured on MS medium supplemented with 6.6 ΌM BAP give maximum axillary shoot proliferation (12.4 shoots). Type of explant significantly influenced the micropropagation rate. Type of carbon source used in the medium imparted a profound effect on shoot growth and dry weight. The maximum dry weight gain of the shoot was observed with 9% sucrose. Conclusion: Development of an efficient micropropagation protocol which can be used to produce more than 10,000 rooted plantlets in 150 days from a single longitudinally divided shoot explant
    corecore