2,856 research outputs found

    Neural correlates of dynamic emotion perception in schizophrenia and the influence of prior expectations.

    Get PDF
    Impaired emotion perception is a well-established and stable deficit in schizophrenia; however, there is limited knowledge about the underlying aberrant cognitive and brain processes that result in emotion perception deficits. Recent influential work has shown that perceptual deficits in schizophrenia may result from aberrant precision in prior expectations, associated with disrupted activity in frontal regions. In the present study, we investigated the perception of dynamic, multisensory emotion, the influence of prior expectations and the underlying aberrant brain processes in schizophrenia. During a functional Magnetic Resonance Imaging scan, participants completed the Dynamic Emotion Perception task, which induces prior expectations with emotion instruction cues. We delineated neural responses and functional connectivity in whole-brain large-scale networks underlying emotion perception. Compared to healthy individuals, schizophrenia patients had lower accuracy specifically for emotions that were congruent with prior expectations. At the neural level, schizophrenia patients had less engagement of right inferior frontal and parietal regions, as well as right amygdala dysconnectivity during discrimination of emotions congruent with prior expectations. The results indicate that individuals with schizophrenia may have aberrant prior expectations about emotional expressions, associated with under-activity in inferior frontoparietal regions and right amygdala dysconnectivity, which results in impaired perception of emotion

    The Neoproterozoic Rivieradal Group of Kronprins Christian Land, eastern North Greenland

    Get PDF
    The Rivieradal Group, formally defined here, is confined to the Vandredalen thrust sheet of the Caledonian orogen in Kronprins Christian Land, eastern North Greenland. It comprises a succession of Neoproterozoic siliciclastic sediments that represent the fill of a half-graben basin. The syn-rift Rivieradal Group is overlain by post-rift sediments of the Hagen Fjord Group. The latter succession is present in both the thrust sheet and the Caledonian foreland to the west. In the foreland, where the Rivieradal Group is not represented, the Hagen Fjord Group disconformably overlies Palaeoproterozoic–Mesoproterozoic sandstones of the Independence Fjord Group

    BcB_c Physics at Hadron Colliders

    Full text link
    In this paper we summarize the results of the theory working group dedicated to the analysis of BcB_c production at hadron colliders.Comment: 7 pages, LaTe

    Critical impact of Ehrlich-Schwöbel barrier on GaN surface morphology during homoepitaxial growth

    Get PDF
    We discuss the impact of kinetics, and in particular the effect of the Ehrlich-Schwöbel barrier (ESB), on the growth and surface morphology of homoepitaxial GaN layers. The presence of an ESB can lead to various self-assembled surface features, which strongly affect the surface roughness. We present an in-depth study of this phenomenon on GaN homoepitaxial layers grown by metal organic vapor phase epitaxy and molecular beam epitaxy. We show how a proper tuning of the growth parameters allows for the control of the surface morphology, independent of the growth technique

    Numerical and experimental study of ethanol combustion in an industrial gas turbine

    Get PDF
    The application of ethanol as a biomass-derived fuel in OPRA’s 2 MWe class OP16 radial gas turbine has been studied both numerically and experimentally. The main purpose of this work is to validate the numerical model for future work on biofuel combustion. For the experimental investigation a modified OP16 gas turbine combustor has been used. This reverse-flow tubular combustor is a diffusion type combustor that has been adjusted to be suitable for numerical validation. Two series of ethanol burning experiments have been conducted at atmospheric pressure with a thermal input ranging from 16 to 72 kW. Exhaust gas temperature and emissions (CO, CO2, O2, NOx) were measured at various fuel flow rates while keeping the air flow rate and air temperature constant. In addition, the temperature profile of the combustor liner has been determined by applying thermochromic paint. CFD simulations have been performed in Ansys Fluent for four different operating conditions considered in the experiments. The simulations are based on a 3D RANS code. Fuel droplets representing the fuel spray are tracked throughout the domain while they interact with the gas phase. A temperature profile based on measurements has been prescribed on the liner to account for heat transfer through the flame tube wall. Detailed combustion chemistry is included by using the steady laminar flamelet model. The predicted levels of CO2 and O2 in the exhaust gas are in good agreement with the experimental results. The calculated and measured exhaust gas temperatures show a close match for the low power condition, but more significant deviations are observed in the higher load cases. Also, the comparison pointed out that the CFD model needs to be improved regarding the prediction of the pollutants CO and NOx. Chemiluminescence of CH radicals in the flame front indicated that the flame extends up to the liner, suggesting the presence of fuel near the surface. However, this result was not confirmed by liner temperature measurements using thermochromic paint.</jats:p

    Quantum identification system

    Full text link
    A secure quantum identification system combining a classical identification procedure and quantum key distribution is proposed. Each identification sequence is always used just once and new sequences are ``refuelled'' from a shared provably secret key transferred through the quantum channel. Two identification protocols are devised. The first protocol can be applied when legitimate users have an unjammable public channel at their disposal. The deception probability is derived for the case of a noisy quantum channel. The second protocol employs unconditionally secure authentication of information sent over the public channel, and thus it can be applied even in the case when an adversary is allowed to modify public communications. An experimental realization of a quantum identification system is described.Comment: RevTeX, 4 postscript figures, 9 pages, submitted to Physical Review

    Ontogenetic shift in diet of a large elapid snake is facilitated by allometric change in skull morphology

    Get PDF
    As snakes are limbless, gape-limited predators, their skull is the main feeding structure involved in prey handling, manipulation and feeding. Ontogenetic changes in prey type and size are likely to be associated with distinct morphological changes in the skull during growth. We investigated ontogenetic variation in diet from stomach contents of 161 Dugite specimens (Pseudonaja affinis, Elapidae) representing the full range of body size for the species, and skull morphology of 46 specimens (range 0.25–1.64 m snout-vent-length; SVL). We hypothesised that changes in prey type throughout postnatal ontogeny would coincide with distinct changes in skull shape. Dugites demonstrate a distinct size-related shift in diet: the smallest individuals ate autotomised reptile tails and reptiles, medium-sized individuals predominantly ate mammals, and the largest individuals had the most diverse diet, including large reptiles. Morphometric analysis revealed that ~40% of the variation in skull shape was associated with body size (SVL). Through ontogeny, skulls changed from a smooth, bulbous cranium with relatively small trophic bones (upper and lower jaws and their attachments), to more rugose bones (as a likely reflection of muscle attachment) and relatively longer trophic bones that would extend gape. Individual shape variation in trophic bone dimensions was greater in larger adults and this likely reflects natural plasticity of individuals feeding on different prey sizes/types. Rather than a distinct morphological shift with diet, the ontogenetic changes were gradual, but positive allometry of individual trophic bones resulted in disproportionate growth of the skull, reflected in increased gape size and mobility of jaw bones in adults to aid the ingestion of larger prey and improve manipulation and processing ability. These results indicate that allometric scaling is an important mechanism by which snakes can change their dietary niche

    Responsive polysaccharide-grafted surfaces for biotribological applications

    Get PDF
    The elucidation of biolubrication mechanisms and the design of artificial biotribological contacts requires the development of model surfaces that can help to tease out the cues that govern friction in biological systems. Polysaccharides provide an interesting option as a biotribological mimic due to their similarity with the glycosylated molecules present at biointerfaces. Here, pectin was successfully covalently grafted at its reducing end to a polydimethylsiloxane (PDMS) surface via a reductive amination reaction. This method enabled the formation of a wear resistant pectin layer that provided enhanced boundary lubrication compared to adsorbed pectin. Pectins with different degrees of methylesterification and blockiness were exposed to salt solutions of varying ionic strength and displayed responsiveness to solvent conditions. Exposure of the grafted pectin layers to solutions of between 1 and 200 mM NaCl resulted in a decrease in boundary friction and an increase in the hydration and swelling of the pectin layer to varying degrees depending on the charge density of the pectin, showing the potential to tune the conformation and friction of the layer using the pectin architecture and environmental cues. The robust and responsive nature of these new pectin grafted surfaces makes them an effective mimic of biotribological interfaces and provides a powerful tool to study the intricate mechanisms involved in the biolubrication phenomenon
    • …
    corecore