76 research outputs found

    The reproducibility of manual RV/LV ratio measurement on CT pulmonary angiography

    Get PDF
    Objectives: Right ventricular (RV) dysfunction carries elevated risk in acute pulmonary embolism (PE). An increased ratio between the size of the right and left ventricles (RV/LV ratio) is a biomarker of RV dysfunction. This study evaluated the reproducibility of RV/LV ratio measurement on CT pulmonary angiography (CTPA). Methods: 20 inpatient CTPA scans performed to assess for acute PE were retrospectively identified from a tertiary UK centre. Each scan was evaluated by 14 radiologists who provided a qualitative overall opinion on the presence of RV dysfunction and measured the RV/LV ratio. Using a threshold of 1.0, the RV/LV ratio measurements were classified as positive (≥1.0) or negative (<1.0) for RV dysfunction. Interobserver agreement was quantified using the Fleiss κ and intraclass correlation coefficient (ICC). Results: Qualitative opinion of RV dysfunction showed weak agreement (κ = 0.42, 95% CI 0.37–0.46). The mean RV/LV ratio measurement for all cases was 1.28 ± 0.68 with significant variation between reporters (p < 0.001). Although agreement for RV/LV measurement was good (ICC = 0.83, 95% CI 0.73–0.91), categorisation of RV dysfunction according to RV/LV ratio measurements showed weak agreement (κ = 0.46, 95% CI 0.41–0.50). Conclusion: Both qualitative opinion and quantitative manual RV/LV ratio measurement show poor agreement for identifying RV dysfunction on CTPA. Advances in knowledge: Caution should be exerted if using manual RV/LV ratio measurements to inform clinical risk stratification and management decisions

    Advancements in cardiac structures segmentation: a comprehensive systematic review of deep learning in CT imaging

    Get PDF
    Background Segmentation of cardiac structures is an important step in evaluation of the heart on imaging. There has been growing interest in how artificial intelligence (AI) methods—particularly deep learning (DL)—can be used to automate this process. Existing AI approaches to cardiac segmentation have mostly focused on cardiac MRI. This systematic review aimed to appraise the performance and quality of supervised DL tools for the segmentation of cardiac structures on CT. Methods Embase and Medline databases were searched to identify related studies from January 1, 2013 to December 4, 2023. Original research studies published in peer-reviewed journals after January 1, 2013 were eligible for inclusion if they presented supervised DL-based tools for the segmentation of cardiac structures and non-coronary great vessels on CT. The data extracted from eligible studies included information about cardiac structure(s) being segmented, study location, DL architectures and reported performance metrics such as the Dice similarity coefficient (DSC). The quality of the included studies was assessed using the Checklist for Artificial Intelligence in Medical Imaging (CLAIM). Results 18 studies published after 2020 were included. The DSC scores median achieved for the most commonly segmented structures were left atrium (0.88, IQR 0.83–0.91), left ventricle (0.91, IQR 0.89–0.94), left ventricle myocardium (0.83, IQR 0.82–0.92), right atrium (0.88, IQR 0.83–0.90), right ventricle (0.91, IQR 0.85–0.92), and pulmonary artery (0.92, IQR 0.87–0.93). Compliance of studies with CLAIM was variable. In particular, only 58% of studies showed compliance with dataset description criteria and most of the studies did not test or validate their models on external data (81%). Conclusion Supervised DL has been applied to the segmentation of various cardiac structures on CT. Most showed similar performance as measured by DSC values. Existing studies have been limited by the size and nature of the training datasets, inconsistent descriptions of ground truth annotations and lack of testing in external data or clinical settings. Systematic Review Registration: [www.crd.york.ac.uk/prospero/], PROSPERO [CRD42023431113]

    Diagnostic accuracy of CT pulmonary angiography in suspected pulmonary hypertension

    Get PDF
    Objectives Computed tomography (CT) pulmonary angiography is widely used in patients with suspected pulmonary hypertension (PH). However, the diagnostic and prognostic significance remains unclear. The aim of this study was to (a) build a diagnostic CT model and (b) test its prognostic significance. Methods Consecutive patients with suspected PH undergoing routine CT pulmonary angiography and right heart catheterisation (RHC) were identified. Axial and reconstructed images were used to derive CT metrics. Multivariate regression analysis was performed in the derivation cohort to identify a diagnostic CT model to predict mPAP ≥ 25 mmHg (the existing ESC guideline definition of PH) and > 20 mmHg (the new threshold proposed at the 6th World Symposium on PH). In the validation cohort, sensitivity, specificity and compromise CT thresholds were identified with receiver operating characteristic (ROC) analysis. The prognostic value of the CT model was assessed using Kaplan-Meier analysis. Results Between 2012 and 2016, 491 patients were identified. In the derivation cohort (n = 247), a CT model was identified including pulmonary artery diameter, right ventricular outflow tract thickness, septal angle and left ventricular area. In the validation cohort (n = 244), the model was diagnostic, with an area under the ROC curve of 0.94/0.91 for mPAP ≥ 25/> 20 mmHg respectively. In the validation cohort, 93 patients died; mean follow-up was 42 months. The diagnostic thresholds for the CT model were prognostic, log rank, all p < 0.01. Discussion In suspected PH, a diagnostic CT model had diagnostic and prognostic utility

    Cardiac magnetic resonance in pulmonary hypertension - an update

    Get PDF
    Purpose of Review This article reviews advances over the past 3 years in cardiac magnetic resonance (CMR) imaging in pulmonary hypertension (PH). We aim to bring the reader up-to-date with CMR applications in diagnosis, prognosis, 4D flow, strain analysis, T1 mapping, machine learning and ongoing research. Recent Findings CMR volumetric and functional metrics are now established as valuable prognostic markers in PH. This imaging modality is increasingly used to assess treatment response and improves risk stratification when incorporated into PH risk scores. Emerging techniques such as myocardial T1 mapping may play a role in the follow-up of selected patients. Myocardial strain may be used as an early marker for right and left ventricular dysfunction and a predictor for mortality. Machine learning has offered a glimpse into future possibilities. Ongoing research of new PH therapies is increasingly using CMR as a clinical endpoint. Summary The last 3 years have seen several large studies establishing CMR as a valuable diagnostic and prognostic tool in patients with PH, with CMR increasingly considered as an endpoint in clinical trials of PH therapies. Machine learning approaches to improve automation and accuracy of CMR metrics and identify imaging features of PH is an area of active research interest with promising clinical utility

    Pulmonary hypertension in association with lung disease : quantitative CT and artificial intelligence to the rescue? State-of-the-art review

    Get PDF
    Accurate phenotyping of patients with pulmonary hypertension (PH) is an integral part of informing disease classification, treatment, and prognosis. The impact of lung disease on PH outcomes and response to treatment remains a challenging area with limited progress. Imaging with computed tomography (CT) plays an important role in patients with suspected PH when assessing for parenchymal lung disease, however, current assessments are limited by their semi-qualitative nature. Quantitative chest-CT (QCT) allows numerical quantification of lung parenchymal disease beyond subjective visual assessment. This has facilitated advances in radiological assessment and clinical correlation of a range of lung diseases including emphysema, interstitial lung disease, and coronavirus disease 2019 (COVID-19). Artificial Intelligence approaches have the potential to facilitate rapid quantitative assessments. Benefits of cross-sectional imaging include ease and speed of scan acquisition, repeatability and the potential for novel insights beyond visual assessment alone. Potential clinical benefits include improved phenotyping and prediction of treatment response and survival. Artificial intelligence approaches also have the potential to aid more focused study of pulmonary arterial hypertension (PAH) therapies by identifying more homogeneous subgroups of patients with lung disease. This state-of-the-art review summarizes recent QCT developments and potential applications in patients with PH with a focus on lung disease

    Semi-automatic thresholding of RV trabeculation improves repeatability and diagnostic value in suspected pulmonary hypertension

    Get PDF
    Objectives: Right ventricle (RV) mass is an imaging biomarker of mean pulmonary artery pressure (MPAP) and pulmonary vascular resistance (PVR). Some methods of RV mass measurement on cardiac MRI (CMR) exclude RV trabeculation. This study assessed the reproducibility of measurement methods and evaluated whether the inclusion of trabeculation in RV mass affects diagnostic accuracy in suspected pulmonary hypertension (PH). Materials and methods: Two populations were enrolled prospectively. (i) A total of 144 patients with suspected PH who underwent CMR followed by right heart catheterization (RHC). Total RV mass (including trabeculation) and compacted RV mass (excluding trabeculation) were measured on the end-diastolic CMR images using both semi-automated pixel-intensity-based thresholding and manual contouring techniques. (ii) A total of 15 healthy volunteers and 15 patients with known PH. Interobserver agreement and scan-scan reproducibility were evaluated for RV mass measurements using the semi-automated thresholding and manual contouring techniques. Results: Total RV mass correlated more strongly with MPAP and PVR (r = 0.59 and 0.63) than compacted RV mass (r = 0.25 and 0.38). Using a diagnostic threshold of MPAP ≥ 25 mmHg, ROC analysis showed better performance for total RV mass (AUC 0.77 and 0.81) compared to compacted RV mass (AUC 0.61 and 0.66) when both parameters were indexed for LV mass. Semi-automated thresholding was twice as fast as manual contouring (p < 0.001). Conclusion: Using a semi-automated thresholding technique, inclusion of trabecular mass and indexing RV mass for LV mass (ventricular mass index), improves the diagnostic accuracy of CMR measurements in suspected PH

    A systematic review of artificial intelligence tools for chronic pulmonary embolism on CT pulmonary angiography

    Get PDF
    Background: Chronic pulmonary embolism (PE) may result in pulmonary hypertension (CTEPH). Automated CT pulmonary angiography (CTPA) interpretation using artificial intelligence (AI) tools has the potential for improving diagnostic accuracy, reducing delays to diagnosis and yielding novel information of clinical value in CTEPH. This systematic review aimed to identify and appraise existing studies presenting AI tools for CTPA in the context of chronic PE and CTEPH. Methods: MEDLINE and EMBASE databases were searched on 11 September 2023. Journal publications presenting AI tools for CTPA in patients with chronic PE or CTEPH were eligible for inclusion. Information about model design, training and testing was extracted. Study quality was assessed using compliance with the Checklist for Artificial Intelligence in Medical Imaging (CLAIM). Results: Five studies were eligible for inclusion, all of which presented deep learning AI models to evaluate PE. First study evaluated the lung parenchymal changes in chronic PE and two studies used an AI model to classify PE, with none directly assessing the pulmonary arteries. In addition, a separate study developed a CNN tool to distinguish chronic PE using 2D maximum intensity projection reconstructions. While another study assessed a novel automated approach to quantify hypoperfusion to help in the severity assessment of CTEPH. While descriptions of model design and training were reliable, descriptions of the datasets used in training and testing were more inconsistent. Conclusion: In contrast to AI tools for evaluation of acute PE, there has been limited investigation of AI-based approaches to characterising chronic PE and CTEPH on CTPA. Existing studies are limited by inconsistent reporting of the data used to train and test their models. This systematic review highlights an area of potential expansion for the field of AI in medical image interpretation. There is limited knowledge of A systematic review of artificial intelligence tools for chronic pulmonary embolism in CT. This systematic review provides an assessment on research that examined deep learning algorithms in detecting CTEPH on CTPA images, the number of studies assessing the utility of deep learning on CTPA in CTEPH was unclear and should be highlighted

    Unenhanced computed tomography as a diagnostic tool in suspected pulmonary hypertension: a retrospective cross-sectional pilot study

    Get PDF
    Background Computed tomography pulmonary angiography (CTPA) has been proposed to be diagnostic for pulmonary hypertension (PH) in multiple studies. However, the utility of the unenhanced CT measurements diagnosing PH has not been fully assessed. This study aimed to assess the diagnostic utility and reproducibility of cardiac and great vessel parameters on unenhanced computed tomography (CT) in suspected pulmonary hypertension (PH). Methods In total, 42 patients with suspected PH who underwent unenhanced CT thorax and right heart catheterization (RHC) were included in the study. Three observers (a consultant radiologist, a specialist registrar in radiology, and a medical student) measured the parameters by using unenhanced CT. Diagnostic accuracy of the parameters was assessed by area under the receiver operating characteristic curve (AUC). Inter-observer variability between the consultant radiologist (primary observer) and the two secondary observers was determined by intra-class correlation analysis (ICC). Results Overall, 35 patients were diagnosed with PH by RHC while 7 patients were not. Main pulmonary arterial (MPA) diameter was the strongest (AUC 0.79 to 0.87) and the most reproducible great vessel parameter. ICC comparing the MPA diameter measurement of the consultant radiologist to the specialist registrar’s and the medical student’s were 0.96 and 0.92, respectively. Right atrial area was the cardiac measurement with highest accuracy and reproducibility (AUC 0.76 to 0.79; ICC 0.980, 0.950) followed by tricuspid annulus diameter (AUC 0.76 to 0.79; ICC 0.790, 0.800). Conclusions MPA diameter and right atrial areas showed high reproducibility. Diagnostic accuracies of these were within the range of acceptable to excellent, and might have clinical value. Tricuspid annular diameter was less reliable and less diagnostic and was therefore not a recommended diagnostic measurement

    Differential response to pallidal deep brain stimulation among monogenic dystonias: systematic review and meta-analysis

    Get PDF
    ObjectiveGenetic subtypes of dystonia may respond differentially to deep brain stimulation of the globus pallidus pars interna (GPi DBS). We sought to compare GPi DBS outcomes among the most common monogenic dystonias.MethodsThis systematic review and meta-analysis followed the Preferred Reporting Items for Systematic Reviews and Meta-analyses and Meta-analysis of Observational Studies in Epidemiology guidelines. We searched PubMed for studies on genetically confirmed monogenic dystonia treated with GPi DBS documenting pre-surgical and post-surgical assessments using the Burke-Fahn-Marsden Dystonia Rating Scale Motor Score (BFMMS) and Burke-Fahn-Marsden Disability Score (BFMDS). We performed (i) meta-analysis for each gene mutation; (ii) weighted ordinary linear regression analyses to compare BFMMS and BFMDS outcomes between DYT-TOR1A and other monogenic dystonias, adjusting for age and disease duration and (iii) weighted linear regression analysis to estimate the effect of age, sex and disease duration on GPi DBS outcomes. Results were summarised with mean change and 95% CI.ResultsDYT-TOR1A (68%, 38.4 points; p<0.001), DYT-THAP1 (37% 14.5 points; p<0.001) and NBIA/DYT-PANK2 (27%, 21.4 points; p<0.001) improved in BFMMS; only DYT-TOR1A improved in BFMDS (69%, 9.7 points; p<0.001). Improvement in DYT-TOR1A was significantly greater than in DYT-THAP1 (BFMMS -31%), NBIA/DYT-PANK2 (BFMMS -35%; BFMDS -53%) and CHOR/DYT-ADCY5 (BFMMS -36%; BFMDS -42%). Worse motor outcomes were associated with longer dystonia duration and older age at dystonia onset in DYT-TOR1A, longer dystonia duration in DYT/PARK-TAF1 and younger age at dystonia onset in DYT-SGCE.ConclusionsGPi DBS outcomes vary across monogenic dystonias. These data serve to inform patient selection and prognostic counselling
    • …
    corecore