4 research outputs found
The Diagnostic Potential of Transition Region Lines under-going Transient Ionization in Dynamic Events
We discuss the diagnostic potential of high cadence ultraviolet spectral data
when transient ionization is considered. For this we use high cadence UV
spectra taken during the impulsive phase of a solar flares (observed with
instruments on-board the Solar Maximum Mission) which showed excellent
correspondence with hard X-ray pulses. The ionization fraction of the
transition region ion O V and in particular the contribution function for the O
V 1371A line are computed within the Atomic Data and Analysis Structure, which
is a collection of fundamental and derived atomic data and codes which
manipulate them. Due to transient ionization, the O V 1371A line is enhanced in
the first fraction of a second with the peak in the line contribution function
occurring initially at a higher electron temperature than in ionization
equilibrium. The rise time and enhancement factor depend mostly on the electron
density. The fractional increase in the O V 1371A emissivity due to transient
ionization can reach a factor of 2--4 and can explain the fast response in the
line flux of transition regions ions during the impulsive phase of flares
solely as a result of transient ionization. This technique can be used to
diagnostic the electron temperature and density of solar flares observed with
the forth-coming Interface Region Imaging Spectrograph.Comment: 18 pages, 6 figure
Origin of the submillimeter radio emission during the time-extended phase of a solar flare
Solar flares observed in the 200-400 GHz radio domain may exhibit a slowly
varying and time-extended component which follows a short (few minutes)
impulsive phase and which lasts for a few tens of minutes to more than one
hour. The few examples discussed in the literature indicate that such
long-lasting submillimeter emission is most likely thermal bremsstrahlung. We
present a detailed analysis of the time-extended phase of the 2003 October 27
(M6.7) flare, combining 1-345 GHz total-flux radio measurements with X-ray,
EUV, and H{\alpha} observations. We find that the time-extended radio emission
is, as expected, radiated by thermal bremsstrahlung. Up to 230 GHz, it is
entirely produced in the corona by hot and cool materials at 7-16 MK and 1-3
MK, respectively. At 345 GHz, there is an additional contribution from
chromospheric material at a few 10^4 K. These results, which may also apply to
other millimeter-submillimeter radio events, are not consistent with the
expectations from standard semi-empirical models of the chromosphere and
transition region during flares, which predict observable radio emission from
the chromosphere at all frequencies where the corona is transparent.Comment: 27 pages, 7 figure