18 research outputs found

    High energy limits of Laplace-type and Dirac-type eigenfunctions and frame flows

    Full text link
    We relate high-energy limits of Laplace-type and Dirac-type operators to frame flows on the corresponding manifolds, and show that the ergodicity of frame flows implies quantum ergodicity in an appropriate sense for those operators. Observables for the corresponding quantum systems are matrix-valued pseudodifferential operators and therefore the system remains non-commutative in the high-energy limit. We discuss to what extent the space of stationary high-energy states behaves classically.Comment: 26 pages, latex2

    Geodesics in the space of measure-preserving maps and plans

    Full text link
    We study Brenier's variational models for incompressible Euler equations. These models give rise to a relaxation of the Arnold distance in the space of measure-preserving maps and, more generally, measure-preserving plans. We analyze the properties of the relaxed distance, we show a close link between the Lagrangian and the Eulerian model, and we derive necessary and sufficient optimality conditions for minimizers. These conditions take into account a modified Lagrangian induced by the pressure field. Moreover, adapting some ideas of Shnirelman, we show that, even for non-deterministic final conditions, generalized flows can be approximated in energy by flows associated to measure-preserving maps

    Level spacing statistics of classically integrable systems -Investigation along the line of the Berry-Robnik approach-

    Full text link
    By extending the approach of Berry and Robnik, the limiting level spacing distribution of a system consisting of infinitely many independent components is investigated. The limiting level spacing distribution is characterized by a single monotonically increasing function μˉ(S)\bar{\mu}(S) of the level spacing SS. Three cases are distinguished: (i) Poissonian if μˉ(+)=0\bar{\mu}(+\infty)=0, (ii) Poissonian for large SS, but possibly not for small SS if 0<μˉ(+)<10<\bar{\mu}(+\infty)< 1, and (iii) sub-Poissonian if μˉ(+)=1\bar{\mu}(+\infty)=1. This implies that, even when energy-level distributions of individual components are statistically independent, non-Poissonian level spacing distributions are possible.Comment: 19 pages, 4 figures. Accepted for publication in Phys. Rev.

    Local structure of the set of steady-state solutions to the 2D incompressible Euler equations

    Get PDF
    It is well known that the incompressible Euler equations can be formulated in a very geometric language. The geometric structures provide very valuable insights into the properties of the solutions. Analogies with the finite-dimensional model of geodesics on a Lie group with left-invariant metric can be very instructive, but it is often difficult to prove analogues of finite-dimensional results in the infinite-dimensional setting of Euler's equations. In this paper we establish a result in this direction in the simple case of steady-state solutions in two dimensions, under some non-degeneracy assumptions. In particular, we establish, in a non-degenerate situation, a local one-to-one correspondence between steady-states and co-adjoint orbits.Comment: 81 page

    Complex zeros of real ergodic eigenfunctions

    Full text link
    We determine the limit distribution (as λ\lambda \to \infty) of complex zeros for holomorphic continuations \phi_{\lambda}^{\C} to Grauert tubes of real eigenfunctions of the Laplacian on a real analytic compact Riemannian manifold (M,g)(M, g) with ergodic geodesic flow. If {ϕjk}\{\phi_{j_k} \} is an ergodic sequence of eigenfunctions, we prove the weak limit formula \frac{1}{\lambda_j} [Z_{\phi_{j_k}^{\C}}] \to \frac{i}{\pi} \bar{\partial} {\partial} |\xi|_g, where [Z_{\phi_{j_k}^{\C}}] is the current of integration over the complex zeros and where ˉ\bar{\partial} is with respect to the adapted complex structure of Lempert-Sz\"oke and Guillemin-Stenzel.Comment: Added some examples and references. Also added a new Corollary, and corrected some typo

    Quantum ergodicity for graphs related to interval maps

    Full text link
    We prove quantum ergodicity for a family of graphs that are obtained from ergodic one-dimensional maps of an interval using a procedure introduced by Pakonski et al (J. Phys. A, v. 34, 9303-9317 (2001)). As observables we take the L^2 functions on the interval. The proof is based on the periodic orbit expansion of a majorant of the quantum variance. Specifically, given a one-dimensional, Lebesgue-measure-preserving map of an interval, we consider an increasingly refined sequence of partitions of the interval. To this sequence we associate a sequence of graphs, whose directed edges correspond to elements of the partitions and on which the classical dynamics approximates the Perron-Frobenius operator corresponding to the map. We show that, except possibly for subsequences of density 0, the eigenstates of the quantum graphs equidistribute in the limit of large graphs. For a smaller class of observables we also show that the Egorov property, a correspondence between classical and quantum evolution in the semiclassical limit, holds for the quantum graphs in question.Comment: 20 pages, 1 figur

    Approach to ergodicity in quantum wave functions

    Full text link
    According to theorems of Shnirelman and followers, in the semiclassical limit the quantum wavefunctions of classically ergodic systems tend to the microcanonical density on the energy shell. We here develop a semiclassical theory that relates the rate of approach to the decay of certain classical fluctuations. For uniformly hyperbolic systems we find that the variance of the quantum matrix elements is proportional to the variance of the integral of the associated classical operator over trajectory segments of length THT_H, and inversely proportional to TH2T_H^2, where TH=hρˉT_H=h\bar\rho is the Heisenberg time, ρˉ\bar\rho being the mean density of states. Since for these systems the classical variance increases linearly with THT_H, the variance of the matrix elements decays like 1/TH1/T_H. For non-hyperbolic systems, like Hamiltonians with a mixed phase space and the stadium billiard, our results predict a slower decay due to sticking in marginally unstable regions. Numerical computations supporting these conclusions are presented for the bakers map and the hydrogen atom in a magnetic field.Comment: 11 pages postscript and 4 figures in two files, tar-compressed and uuencoded using uufiles, to appear in Phys Rev E. For related papers, see http://www.icbm.uni-oldenburg.de/icbm/kosy/ag.htm

    Attainable diffeomorphisms

    No full text
    corecore