13 research outputs found

    Development of brain tissue swelling predictive tools for ischaemic stroke patient post-treatment

    Get PDF
    Ischaemic stroke is one of the causes of death worldwide. Treatments such as thrombolysis and catheterisation must be given within 3 hours after stroke onset, in which treatments beyond this time may pose risk of brain tissue swelling. Thus, a prediction system must be made to determine the suitability of a stroke treatment to avoid the risk of failure. In this report, a mathematical model based on poroelastic theory and asymptotic expansion homogenization has been developed to study the formation of brain tissue swelling after ischaemia-reperfusion treatment. Firstly, the mathematical model of brain tissue swelling after ischaemia-reperfusion treatment is investigated using an ideal 2D brain geometry. The objective here is to observe the effect of infarct size and location towards the formation and severity of brain herniation, which will form due to brain tissue swelling. However, this model assumed that the blood pressure is constant and homogeneous throughout the brain, while in fact, the blood capillaries vary in sizes and shapes. Therefore, asymptotic expansion homogenization technique is applied to allow for the inclusion of capillaries sizes into the initial model. This method transforms the initial model into two types of equations: (1) macroscale governing equations; and (2) microscale cell problems. In order to solve for the macroscale governing equations, the microscale cell problems must first be solved on a brain tissue geometry to calculate the effective parametric tensors, which later be used in the macroscale governing equations. Lastly, the mathematical model is solved in a realistic brain geometry to evcaluate the effect of different mechanical properties of the brain towards brain tissue swelling formation

    Granulometric and facies analysis of Middle–Upper Jurassic rocks of Ler Dome, Kachchh, western India: an attempt to reconstruct the depositional environment

    No full text
    Grain size analysis is an important sedimentological tool used to unravel hydrodynamic conditions, mode of transportation and deposition of detrital sediments. For the present study, detailed grain size analysis was carried out in order to decipher the palaeodepositional environment of Middle–Upper Jurassic rocks of the Ler Dome (Kachchh, western India), which is further reinforced by facies analysis. Microtextures were identified as grooves, straight steps and V-shaped pits, curved steps and solution pits suggesting the predominance of chemical solution activity. Grain size statistical parameters (Graphic and Moment parameters) were used to document depositional processes, sedimentation mechanisms and conditions of hydrodynamic energy, as well as to discriminate between various depositional environments. The grain size parameters show that most of the sandstones are medium- to coarse-grained, moderately to well sorted, strongly fine skewed to fine skewed and mesokurtic to platykurtic in nature. The abundance of medium- to coarse-grained sandstones indicates fluctuating energy levels of the deposition medium and sediment type of the source area. The bivariate plots show that the samples are mostly grouped, except for some samples that show a scattered trend, which is either due to a mixture of two modes in equal proportion in bimodal sediments or good sorting in unimodal sediments. The linear discriminant function analysis is predominantly indicative of turbidity current deposits under shallow-marine conditions. The C-M plots indicate that the sediments formed mainly by rolling to bottom suspension and rolling condition in a beach subenvironment. Log probability curves show that the mixing between the suspension and saltation populations is related to variable energy conditions

    Thermal Aging of Unsaturated Polyester Composite Reinforced with E-Glass Nonwoven Mat

    No full text
    An experiment was carried out using glass fiber (GF) as reinforcing materials with unsaturated polyester matrix to fabricate composite by hand layup technique. Four layers of GF were impregnated by polyester resin and pressed under a load of 5 kg for 20 hours. The prepared composite samples were treated by prolonged exposure to heat for 1 hour at 60-150°C and compared with untreated GF-polyester composite. Different mechanical test of the fabricated composite were investigated. The experiment depicted significant improvement in the mechanical properties of the fabricated composite resulted from the heat treatment. The maximum tensile strength of 200.6 MPa is found for 90°C heat-treated sample. The mechanical properties of the composite do seem to be very affected negatively above 100°C. Water uptake of the composite was carried out and thermal stability of the composite was investigated by thermogravimetric analysis, and it was found that the composite is stable up to 600°C. Fourier transform infrared spectroscopy shows the characteristic bond in the composite. Finally, the excellent elevated heat resistant capacity of glass-fiber-reinforced polymeric composite shows the suitability of its application to heat exposure areas such as kitchen furniture materials, marine, and electric board

    Australian, Malaysian and Indonesian Accounting Academics' Teaching Experiences During the COVID-19 Pandemic

    Get PDF
    This study analyses and presents accounting academics' experiences in six universities in Australia, Malaysia, and Indonesia to adapt to the swift change to the remote virtual classroom delivery model forced by the COVID-19 pandemic, while also gaining valuable lessons from this unique situation. In this study, autoethnography's basic principles were used. The main results suggest that the universities' combined current information and communication technologies, learning management systems, blended learning experiences, training, and supports, although not without hitches, were able to accommodate the shift to a remote virtual classroom model quite effectively. However, the move to fully online assessment has been conceded to likely increase the embedded risk of student cheating. The availability of reliable internet connection for students is also crucial in ensuring access equality and effective remote virtual classroom delivery
    corecore