173 research outputs found

    Effect of rotation of cowpea (Vigna unguiculata) with fonio (Digitaria exilis) and millet (Pennisetum glaucum) on Macrophomina phaseolina densities and cowpea yield

    Get PDF
    Macrophomina phaseolina, the causal agent of charcoal rot, causes great damage to cowpea in the Sahel. One of the few options to manage the disease is by cropping nonhosts that may reduce the soil inoculum below a damage threshold level. To test this, fonio (Digitaria exilis) and millet (Pennisetum glaucum) were cropped continuously for 3 years in plots with a natural infestation of 24-53 microsclerotia g(-1) soil at the onset of the experiment. Next, a susceptible cowpea variety was grown to quantify disease incidence and severity on these soils. Fonio and millet both reduced microsclerotial densities in soils from the first year onwards. Reductions under fonio (81% after the 2(nd) year; 86% after the 3(rd) year) were significantly stronger than under millet (56 and 66% for the 2(nd) and 3(rd) year respectively). Fonio was not infected by M. phaseolina, while the root systems of millet had low densities of microsclerotia. Cowpea yielded significantly more hay and pods after 3 years of fonio than of millet. Cowpea yields and disease incidence (dead plants) could be explained well by pre-planting microsclerotial densities. We conclude that rotation of cowpea with a gramineous crop may lead to a relatively fast decline of inoculum density. In the case of a high inoculum density, fonio can be grown for three years to reduce M. phaseolina densities in soi

    Translocation of bacteria from animal excrements to soil and associated habitats

    Get PDF
    The population dynamics of Salmonella enterica var. Typhimurium MAE 110 gfp, Escherichia coli O157:H7 gfp, and Pseudomonas fluorescens 32 gfp were investigated in their introduction to cattle excrements and subsequent entering the soil, plants of cress (Lepidium sativum L.), and migration through the gastroenteric tract of French snails (Helix pomatia L.). The survival of these bacteria in the excrements and soil was investigated at cyclically changing (day-night, 25–15 °C) and constant (18 °C) temperatures. The cyclically changing temperature adversely affected the survival of E. coli O157:H7 gfp, and P. fluorescens but did not influence S. enterica var. Typhimurium. All the bacteria and, especially, the analogues of enteropathogens showed high survival in the cattle and snail excrements, soil, and on the plants under the gradual decrease in their population. On the cress plants grown in a mixture of cattle excrements and soil, an increase in the number of the introduced bacteria was observe

    Multistep introduction of bacteria to natural substrates at different initial inoculation doses

    Get PDF
    The population dynamics of the saprotrophic Pseudomonas fluorescens 32 gfp bacteria and two conventionally pathogenic enterobacteria (Escherichia coli 0157:H7 and Salmonella enterica var. Typhimurium) were investigated in their inoculation at different doses into cattle excreta and their subsequent entering soil and plants and migration through the gastroenteric tract of invertebrates. All the introduced bacteria investigated are shown to be able to overcome ecological barriers as they migrate through the natural substrates and habitats. The introduce microorganisms maintain their high population density even at the lowest initial inoculation dose-10(5) CFU/g of dry matter. Plants were found to be a favorable substrate for the survival of the bacteria investigated (for enteropathogens, in particular). Enteropathogens are able to pass through the gastroenteric tract of invertebrates. Therefore, these organisms can function as incubators and carriers of enteroinfections in natur

    Spatial variation in biodiversity, soil degradation and productivity in agricultural landscapes in the highlands of Tigray, northern Ethiopia

    Get PDF
    There is a growing concern about food security and sustainability of agricultural production in developing countries. However, there are limited attempts to quantify agro-biodiversity losses and relate these losses to soil degradation and crop productivity, particularly in Tigray, Ethiopia. In this study, spatial variation in agro-biodiversity and soil degradation was assessed in 2000 and 2005 at 151 farms in relation to farm, productivity, wealth, social, developmental and topographic characteristics in Tigray, northern Ethiopia. A significant decrease in agro-biodiversity was documented between 2000 and 2005, mainly associated with inorganic fertilizer use, number of credit sources and proximity to towns and major roads. Agro-biodiversity was higher at farms with higher soil fertility (available P and total N) and higher productivity (total caloric crop yield). Low soil organic matter, few crop selection criteria and steep slopes contributed to soil erosion. Sparsely and intensively cultivated land use types, as determined from satellite images, were associated with high and low agro-biodiversity classes, respectively, as determined during on-farm surveys in 2005. This study gives insight into the recent changes in and current status of agro-biodiversity and soil degradation at different spatial scales, which can help to improve food security through the maintenance of agro-biodiversity resource

    Effect of green manure crops and organic amendments on incidence of nematode-borne tobacco rattle virus

    Get PDF
    Tobacco rattle tobravirus (TRV) may infect several ornamental bulb crops and is transmitted by trichodorid nematodes. Paratrichodorus teres, P. pachydermus and Trichodorus similis are the main vectors in the Netherlands. In field experiments the effects of various pre-crops and organic amendments on the TRV Infection Potential of Soils (TRV-IPS) and on disease level in tulip and gladiolus were studied. Organic matter amendment of soil at a rate of 1% dry weight has been shown to reduce the host finding activity of P. teres under laboratory conditions. In a field containing viruliferous P. teres dahlia, italian ryegrass, white mustard and fodder radish were grown or the soil was kept fallow and the resulting TRV-IPS prior to the bulbous test crops was measured by a soil dilution bait test method. The application of organic matter was tested after dahlia as pre-crop. Household waste compost (GFT compost) was applied as a soil mix or planting furrow treatment at 12 tons dry weight per ha for tulip and gladiolus. Spent mushroom compost (Champost) was added as planting furrow treatment at 17 or 12 tons dw/ha, respectively, for tulip and gladiolus. The percentage of TRV diseased plants was determined at flowering in all pre-crop and organic amendment treatments. Champost in the planting furrow and fodder radish as a preceding crop reduced the percentage infection in tulip under favourable conditions for TRV infection. In gladiolus most organic amendments, fodder radish as pre-crop and keeping the soil fallow reduced the TRV infection rate of the plants during the first growing season, but not of the plants grown from the corms in the next year

    Daily dynamics of cellulase activity in arable soils depending on management practices

    Get PDF
    The daily dynamics of cellulase activity was studied during 27 days by the cellophane membrane method on soils managed using the conventional high-input farming system (application of mineral fertilizers and pesticides) and the biological conservation farming system (application of organic fertilizers alone) in a microfield experiment. The regular oscillatory dynamics of the cellulase activity were revealed and confirmed by the harmonic (Fourier) analysis. The oscillatory dynamics of the cellulase activity had a self-oscillatory nature and was not directly caused by the disturbing impacts of both the uncontrolled (natural) changes in the temperature and moisture (rainfall) and the controlled ones (the application of different fertilizers). The disturbing impacts affected the oscillation amplitude of the cellulase activity but not the frequency (periods) of the oscillations. The periodic oscillations of the cellulase activity were more significant in the soil under the high-input management compared to the soil under the biological farming syste

    Organic and conventional tomato cropping systems.

    Get PDF
    Among several alternative agricultural systems have been developed, organic agriculture has deserved increasing interest from. The objective of this paper was comparing both organic (OS) and conventional (CS) tomato cropping systems for varieties Débora and Santa Clara, through an interdisciplinary study. The experiment was set up in a randomized blocks design with six replicates, in a dystrophic Ultisol plots measuring 25 ´ 17 m. Cropping procedures followed by either local conventional or organic growers practices recommendations. Fertilization in the OS was done with organic compost, single superphosphate, dolomitic limes (5L, 60 g, and 60 g per pit), and sprayed twice a week with biofertilizer. Fertilization in the CS was done with 200 g 4-14-8 (NPK) per pit and, after planting, 30 g N, 33 g K and 10.5 g P per pit; from 52 days after planting forth, plants were sprayed once a week with foliar fertilizer. In the CS, a blend of insecticides, fungicides and miticides was sprayed twice a week, after planting. In the OS, extracts of black pepper, garlic, and Eucalyptus; Bordeaux mixture, and biofertilizer, were applied twice a week to control diseases and pests. Tomato spotted wilt was the most important disease in the OS, resulting in smaller plant development, number of flower clusters and yield. In the CS, the disease was kept under control, and the population of thrips, the virus vector, occurred at lower levels than in the OS. Variety Santa Clara presented greater incidence of the viral disease, and for this reason had a poorer performance than 'Débora', especially in the OS. Occurrence of Liriomyza spp. was significantly smaller in the OS, possibly because of the greater frequency of Chrysoperla. The CS had smaller incidence of leaf spots caused by Septoria lycopersici and Xanthomonas vesicatoria. However, early blight and fruit rot caused by Alternaria solani occurred in larger numbers. No differences were observed with regard to the communities of fungi and bacteria in the phylloplane, and to the occurrence of weeds

    PathOrganic – Risks and Recommendations Regarding Human Pathogens in Organic Vegetable Production Chains

    Get PDF
    PathOrganic assesses risks associated with the consumption of fresh and minimally processed vegetables due to the prevalence of bacterial human pathogens in plant produce. The project evaluates whether organic production poses a risk on food safety, taking into consideration sources of pathogen transmission (e.g. animal manure). The project also explores whether organic versus conventional production practices may reduce the risk of pathogen manifestation. In Europe, vegetable-linked outbreaks are not well investigated. A conceptual model together with novel sampling strategies and specifically adjusted methods provides the basis for large-scale surveys of organically grown plant produce in five European countries. Critical control points are determined and evaluated and factors contributing to a food safety problem are analyzed in greenhouse and field experiments. The project aims at developing a quantitative risk assessment model and at formulating recommendations for improving food safety in organic vegetable production
    corecore