60 research outputs found

    Experiences in a respiratory resuscitation unit

    Get PDF
    No Abstract

    Optimizing Management of Patients With Barrett's Esophagus and Low-Grade or No Dysplasia Based on Comparative Modeling

    Get PDF
    Background & Aims: Endoscopic treatment is recommended for patients with Barrett's esophagus (BE) with high-grade dysplasia, yet clinical management recommendations are inconsistent for patients with BE without dysplasia (NDBE) or with low-grade dysplasia (LGD). We used a comparative modeling analysis to identify optimal management strategies for these patients. Methods: We used 3 independent population-based models to simulate cohorts of 60-year-old individuals with BE in the United States. We followed up each cohort until death without surveillance and treatment (natural disease progression), compared with 78 different strategies of management for patients with NDBE or LGD. We determined the optimal strategy using cost-effectiveness analyses, at a willingness-to-pay threshold of 100,000perquality−adjustedlife−year(QALY).Results:Inthe3models,theaveragecumulativeincidenceofesophagealadenocarcinomawas111cases,withcoststotaling100,000 per quality-adjusted life-year (QALY). Results: In the 3 models, the average cumulative incidence of esophageal adenocarcinoma was 111 cases, with costs totaling 5.7 million per 1000 men with BE. Surveillance and treatment of men with BE prevented 23% to 75% of cases of esophageal adenocarcinoma, but increased costs to 6.2to6.2 to 17.3 million per 1000 men with BE. The optimal strategy was surveillance every 3 years for men with NDBE and treatment of LGD after confirmation by repeat endoscopy (incremental cost-effectiveness ratio, 53,044/QALY).TheaverageresultsforwomenwereconsistentwiththeresultsformenforLGDmanagement,buttheoptimalsurveillanceintervalforwomenwithNDBEwas5years(incrementalcost−effectivenessratio,53,044/QALY). The average results for women were consistent with the results for men for LGD management, but the optimal surveillance interval for women with NDBE was 5 years (incremental cost-effectiveness ratio, 36,045/QALY). Conclusions: Based on analyses from 3 population-based models, the optimal management strategy for patient with BE and LGD is endoscopic eradication, but only after LGD is confirmed by a repeat endoscopy. The optimal strategy for patients with NDBE is endoscopic surveillance, using a 3-year interval for men and a 5-year interval for women

    Safety and efficacy of vanzacaftor–tezacaftor–deutivacaftor in adults with cystic fibrosis: randomised, double-blind, controlled, phase 2 trials

    Get PDF
    Background Elexacaftor–tezacaftor–ivacaftor has been shown to be safe and efficacious in people with cystic fibrosis and at least one F508del allele. Our aim was to identify a novel cystic fibrosis transmembrane conductance regulator (CFTR) modulator combination capable of further increasing CFTR-mediated chloride transport, with the potential for once-daily dosing. Methods We conducted two phase 2 clinical trials to assess the safety and efficacy of a once-daily combination of vanzacaftor–tezacaftor–deutivacaftor in participants with cystic fibrosis who were aged 18 years or older. A phase 2 randomised, double-blind, active-controlled study (VX18-561-101; April 17, 2019, to Aug 20, 2020) was carried out to compare deutivacaftor monotherapy with ivacaftor monotherapy in participants with CFTR gating mutations, following a 4-week ivacaftor monotherapy run-in period. Participants were randomly assigned to receive either ivacaftor 150 mg every 12 h, deutivacaftor 25 mg once daily, deutivacaftor 50 mg once daily, deutivacaftor 150 mg once daily, or deutivacaftor 250 mg once daily in a 1:1:2:2:2 ratio. The primary endpoint was absolute change in ppFEV1 from baseline at week 12. A phase 2 randomised, double-blind, controlled, proof-of-concept study of vanzacaftor–tezacaftor–deutivacaftor (VX18-121-101; April 30, 2019, to Dec 10, 2019) was conducted in participants with cystic fibrosis and heterozygous for F508del and a minimal function mutation (F/MF genotypes) or homozygous for F508del (F/F genotype). Participants with F/MF genotypes were randomly assigned 1:2:2:1 to receive either 5 mg, 10 mg, or 20 mg of vanzacaftor in combination with tezacaftor–deutivacaftor or a triple placebo for 4 weeks, and participants with the F/F genotype were randomly assigned 2:1 to receive either vanzacaftor (20 mg)–tezacaftor–deutivacaftor or tezacaftor–ivacaftor active control for 4 weeks, following a 4-week tezacaftor–ivacaftor run-in period. Primary endpoints for part 1 and part 2 were safety and tolerability and absolute change in ppFEV1 from baseline to day 29. Secondary efficacy endpoints were absolute change from baseline at day 29 in sweat chloride concentrations and Cystic Fibrosis Questionnaire-Revised (CFQ-R) respiratory domain score. These clinical trials are registered with ClinicalTrials.gov, NCT03911713 and NCT03912233, and are complete. Findings In study VX18-561-101, participants treated with deutivacaftor 150 mg once daily (n=23) or deutivacaftor 250 mg once daily (n=24) had mean absolute changes in ppFEV1 of 3·1 percentage points (95% CI –0·8 to 7·0) and 2·7 percentage points (–1·0 to 6·5) from baseline at week 12, respectively, versus –0·8 percentage points (–6·2 to 4·7) with ivacaftor 150 mg every 12 h (n=11); the deutivacaftor safety profile was consistent with the established safety profile of ivacaftor 150 mg every 12 h. In study VX18-121-101, participants with F/MF genotypes treated with vanzacaftor (5 mg)–tezacaftor–deutivacaftor (n=9), vanzacaftor (10 mg)–tezacaftor–deutivacaftor (n=19), vanzacaftor (20 mg)–tezacaftor–deutivacaftor (n=20), and placebo (n=10) had mean changes relative to baseline at day 29 in ppFEV1 of 4·6 percentage points (−1·3 to 10·6), 14·2 percentage points (10·0 to 18·4), 9·8 percentage points (5·7 to 13·8), and 1·9 percentage points (−4·1 to 8·0), respectively, in sweat chloride concentration of −42·8 mmol/L (–51·7 to –34·0), −45·8 mmol/L (95% CI –51·9 to –39·7), −49·5 mmol/L (–55·9 to –43·1), and 2·3 mmol/L (−7·0 to 11·6), respectively, and in CFQ-R respiratory domain score of 17·6 points (3·5 to 31·6), 21·2 points (11·9 to 30·6), 29·8 points (21·0 to 38·7), and 3·3 points (−10·1 to 16·6), respectively. Participants with the F/F genotype treated with vanzacaftor (20 mg)–tezacaftor–deutivacaftor (n=18) and tezacaftor–ivacaftor (n=10) had mean changes relative to baseline (taking tezacaftor–ivacaftor) at day 29 in ppFEV1 of 15·9 percentage points (11·3 to 20·6) and −0·1 percentage points (−6·4 to 6·1), respectively, in sweat chloride concentration of −45·5 mmol/L (−49·7 to −41·3) and −2·6 mmol/L (−8·2 to 3·1), respectively, and in CFQ-R respiratory domain score of 19·4 points (95% CI 10·5 to 28·3) and −5·0 points (−16·9 to 7·0), respectively. The most common adverse events overall were cough, increased sputum, and headache. One participant in the vanzacaftor–tezacaftor–deutivacaftor group had a serious adverse event of infective pulmonary exacerbation and another participant had a serious rash event that led to treatment discontinuation. For most participants, adverse events were mild or moderate in severity. Interpretation Once-daily dosing with vanzacaftor–tezacaftor–deutivacaftor was safe and well tolerated and improved lung function, respiratory symptoms, and CFTR function. These results support the continued investigation of vanzacaftor–tezacaftor–deutivacaftor in phase 3 clinical trials compared with elexacaftor–tezacaftor–ivacaftor. Funding Vertex Pharmaceuticals

    Influence of Ageing OH Glucose Homeostasis

    No full text

    Oscillations in Insulin Secretion During Constant Glucose Infusion in Normal Man: Relationship to Changes in Plasma Glucose

    No full text
    Peripheral plasma or serum concentrations of glucose, insulin, C-peptide, glucagon, and cortisol and insulin secretory rates (ISR) were determined at 15-min intervals in eight normal subjects during a constant iv infusion of 4.5 mg glucose/kg� min for a 24-h period. During each sampling interval, the secretory rate of insulin was calculated by deconvolution of the peripheral plasma C-peptide concentration using C-peptide kinetic parameters derived after bolus injections of C-peptide in individual subjects. Periodogram analysis of the individual glucose curves demonstrated a circadian rhythm in all subjects, with a major nocturnal acrophase occurring at an average clock time of 0228 h (range, 0045-0350 h). In five of the eight subjects, a minor acrophase occurred at an average time of 1774 h (range, 1530-2045 h). This diurnal variation in plasma glucose levels was not paralleled by a similar pattern in insulin secretion. Although glucose was infused at a constant rate, significant pulses were found in glucose, insulin, and C-peptide levels and ISR; the pulse durations of these parameters were 182 ± 30 (± SE), 89 ± 5, 100 ± 8, and 85 ± 5 min, respectively, and their periodicities were 208 ± 33, 106 ± 7, 114 ± 10, and 106 ± 7 min. The durations and frequencies for pulses of insulin, C-peptide, and ISR were not significantly different, whereas glucose pulses had a longer duration and were less frequent (P < 0.05, by analysis of variance). On the average, 54 ± 9% of the C-peptide pulses and 47 ± 8% of the ISR pulses were concomitant with a pulse in glucose levels. Moreover, approximately half of the Cpeptide and ISR pulses that were not concomitant with a glucose pulse occurred in synchrony with a shoulder on the up-stroke or down-stroke of glucose pulses. Analysis of glucagon and cortisol profiles revealed no significant associations with the insulin and glucose oscillations. In conclusion, during a constant glucose infusion in normal subjects, regular oscillations of insulin secretion occur at 80- to 120-min intervals. Their tight coupling with glucose oscillations and the lack of association with fluctuations of glucagon and cortisol suggest that these oscillations represent a dynamic property of the insulin-glucose feedback loop. (J Clin Endocrinol Metab 67: 307, 1988). © 1988 by The Endocrine Society.SCOPUS: ar.jinfo:eu-repo/semantics/publishe
    • …
    corecore