71 research outputs found

    Baryon Density Correlations in High Temperature Hadronic Matter

    Full text link
    As part of an ongoing effort to characterize the high temperature phase of QCD, in a numerical simulation using the staggered fermion scheme, we measure the quark baryon density in the vicinity of a fixed test quark at high temperature and compare it with similar measurements at low temperature and at the crossover temperature. We find an extremely weak correlation at high temperature, suggesting that small color singlet clusters are unimportant in the thermal ensemble. We also find that at T=0.75 TcT = 0.75\ T_c the total induced quark number shows a surprisingly large component attributable to baryonic screening. A companion simulation of a simple flux tube model produces similar results and also suggests a plausible phenomenological scenario: As the crossover temperature is approached from below, baryonic states proliferate. Above the crossover temperature the mean size of color singlet clusters grows explosively, resulting in an effective electrostatic deconfinement.Comment: 26 pp, RevTeX, 12 postscript figures, combined in a single shell archive file. (Also available in 13 postscript files by anonymous ftp from einstein.physics.utah.edu, /pub/milc/paper.sh.Z.

    A new ghost cell/level set method for moving boundary problems:application to tumor growth

    Get PDF
    In this paper, we present a ghost cell/level set method for the evolution of interfaces whose normal velocity depend upon the solutions of linear and nonlinear quasi-steady reaction-diffusion equations with curvature-dependent boundary conditions. Our technique includes a ghost cell method that accurately discretizes normal derivative jump boundary conditions without smearing jumps in the tangential derivative; a new iterative method for solving linear and nonlinear quasi-steady reaction-diffusion equations; an adaptive discretization to compute the curvature and normal vectors; and a new discrete approximation to the Heaviside function. We present numerical examples that demonstrate better than 1.5-order convergence for problems where traditional ghost cell methods either fail to converge or attain at best sub-linear accuracy. We apply our techniques to a model of tumor growth in complex, heterogeneous tissues that consists of a nonlinear nutrient equation and a pressure equation with geometry-dependent jump boundary conditions. We simulate the growth of glioblastoma (an aggressive brain tumor) into a large, 1 cm square of brain tissue that includes heterogeneous nutrient delivery and varied biomechanical characteristics (white matter, gray matter, cerebrospinal fluid, and bone), and we observe growth morphologies that are highly dependent upon the variations of the tissue characteristics—an effect observed in real tumor growth

    Electronic structure and magnetic properties of the linear chain cuprates Sr_2CuO_3 and Ca_2CuO_3

    Full text link
    Sr_2CuO_3 and Ca_2CuO_3 are considered to be model systems of strongly anisotropic, spin-1/2 Heisenberg antiferromagnets. We report on the basis of a band-structure analysis within the local density approximation and on the basis of available experimental data a careful analysis of model parameters for extended Hubbard and Heisenberg models. Both insulating compounds show half-filled nearly one-dimensional antibonding bands within the LDA. That indicates the importance of strong on-site correlation effects. The bonding bands of Ca_2CuO_3 are shifted downwards by 0.7 eV compared with Sr_2CuO_3, pointing to different Madelung fields and different on-site energies within the standard pd-model. Both compounds differ also significantly in the magnitude of the inter-chain dispersion along the crystallographical a-direction: \approx 100 meV and 250 meV, respectively. Using the band-structure and experimental data we parameterize a one-band extended Hubbard model for both materials which can be further mapped onto an anisotropic Heisenberg model. From the inter-chain dispersion we estimate a corresponding inter-chain exchange constant J_{\perp} \approx 0.8 and 3.6 meV for Sr_2CuO_3 and Ca_2CuO_3, respectively. Comparing several approaches to anisotropic Heisenberg problems, namely the random phase spin wave approximation and modern versions of coupled quantum spin chains approaches, we observe the advantage of the latter in the reproduction of reasonable values for the N\'eel temperature T_N and the magnetization m_0 at zero temperature. Our estimate of J⊥J_{\perp} gives the right order of magnitude and the correct tendency going from Sr_2CuO_3 to Ca_2CuO_3. In a comparative study we also include CuGeO_3.Comment: 23 pages, 5 figures, 1 tabl

    Medication reconciliation as a strategy for preventing medication errors

    Get PDF
    ABSTRACT One of the current barriers proposed to avoid possible medication errors, and consequently harm to patients, is the medication reconciliation, a process in which drugs used by patients prior to hospitalization can be compared with those prescribed in the hospital. This study describes the results of a pharmacist based reconciliation conducted during six months in clinical units of a university hospital. Fourteen patients (23.33%) had some kind of problem related to medicine. The majority (80%) of medication errors were due to medication omission. Pharmaceutical interventions acceptance level was 90%. The results suggest that pharmacists based reconciliation can have a relevant role in preventing medication errors and adverse events. Moreover, the detailed interview, conducted by the pharmacist, is able to rescue important information regarding the use of drugs, allowing to avoid medications errors and patient injury
    • …
    corecore