21 research outputs found

    Using microsatellites to obtain genetic structure data for Red-backed shrike (Lanius collurio) : a pilot study

    Get PDF
    Contains fulltext : 33090.pdf (publisher's version ) (Open Access

    A botanical perspective on modeling plants and plant shapes in computer graphics

    No full text
    Contains fulltext : 60591.pdf (preprint version ) (Open Access)CCCT'0

    Meiosis: inducing variation by reduction

    No full text
    Item does not contain fulltextA brief introduction is presented with some thought on the origin of meiosis. Subsequently, a sequential overview of the diverse processes that take place during meiosis is provided, with an eye to similarities and differences between the different eukaryotic systems. In the final part, we try to summarize the available core meiotic mutants and make a comprehensive comparison for orthologous genes between fungal, plant, and animal systems

    The duplicated B-class heterodimer model: Whorl-specific effects and complex genetic interactions in Petunia hybrida flower development

    No full text
    Item does not contain fulltextIn both Antirrhinum (Antirrhinum majus) and Arabidopsis (Arabidopsis thaliana), the floral B-function, which specifies petal and stamen development, is embedded in a heterodimer consisting of one DEFICIENS (DEF)/APETALA3 (AP3)-like and one GLOBOSA (GLO)/PISTILLATA (PI)-like MADS box protein. Here, we demonstrate that gene duplications in both the DEF/AP3 and GLO/PI lineages in Petunia hybrida (petunia) have led to a functional diversification of their respective members, which is reflected by partner specificity and whorl-specific functions among these proteins. Previously, it has been shown that mutations in PhDEF (formerly known as GREEN PETALS) only affect petal development. We have isolated insertion alleles for PhGLO1 (FLORAL BINDING PROTEIN1) and PhGLO2 (PETUNIA MADS BOX GENE2) and demonstrate unique and redundant properties of PhDEF, PhGLO1, and PhGLO2. Besides a full homeotic conversion of petals to sepals and of stamens to carpels as observed in phglo1 phglo2 and phdef phglo2 flowers, we found that gene dosage effects for several mutant combinations cause qualitative and quantitative changes in whorl 2 and 3 meristem fate, and we show that the PHDEF/PHGLO1 heterodimer controls the fusion of the stamen filaments with the petal tube. Nevertheless, when the activity of PhDEF, PhGLO1, and PhGLO2 are considered jointly, they basically appear to function as DEF/GLO does in Antirrhinum and to a lesser extent as AP3/PI in Arabidopsis. By contrast, our data suggest that the function of the fourth B-class MADS box member, the paleoAP3-type PETUNIA HYBRIDA TM6 (PhTM6) gene, differs significantly from the known euAP3-type DEF/AP3-like proteins; PhTM6 is mainly expressed in the developing stamens and ovary of wild-type flowers, whereas its expression level is upregulated in whorls 1 and 2 of an A-function floral mutant; PhTM6 is most likely not involved in petal development. The latter is consistent with the hypothesis that the evolutionary origin of the higher eudicot petal structure coincided with the appearance of the euAP3-type MADS box genes

    A PCR-based assay to detect hAT-like transposon sequences in plants

    No full text
    Item does not contain fulltex

    A gene-based RFLP map of petunia

    No full text

    An AFLP-based genome-wide mapping strategy.

    No full text
    Contains fulltext : 60189.pdf (publisher's version ) (Closed access)To efficiently determine the chromosomal location of phenotypic mutants, we designed a genome-wide mapping strategy that can be used in any crop for which a dense AFLP (Amplified Fragment Length Polymorphism) map is available or can be made. The AFLP technique is particularly suitable to initiate map-based cloning projects because it detects many markers per reaction. First a standard set of AFLP primer combinations that results in a framework of AFLP markers well dispersed over the genome is selected. These primer combinations are applied to a limited number of mutant individuals from a segregating population to register linkage and non-linkage of the AFLP markers to the gene-of-interest. Further delineation of the area of interest is accomplished by analyzing the remaining recombinants and additional mutant individuals with AFLP markers that lie within the identified region. We illustrate the usefulness of the method by mapping three rotunda ( ron) leaf-form mutant loci of Arabidopsis thaliana and show that in the initial phase of map-based cloning projects a 400-600 kb interval can be identified for the average mutant locus within a few weeks. Once such an area is identified and before initiating the more time-consuming fine-mapping procedure, it is essential to examine publicly available databases for candidate genes and known mutants in the identified region. The 390-kb interval on chromosome 4 that harbors the ron2 mutation, also carries a known flower mutant, leunig ( lug); upon crossing, the two mutants appeared to be allelic. When no such candidates are found, the mapping procedure should be continued. We present a strategy to efficiently select recombinants that can be used for fine mapping

    Antisense chalcone synthase genes in petunia: Visualization of variable transgene expression

    No full text
    The constitutive expression of an antisense chalcone synthase (CHS) gene in transgenic petunia plants results with high frequency in a reduced flower pigmentation due to a reduction in the CHS mRNA steady-state level in floral tissue. Here we show that this reduction is specific for CHS mRNA; chalcone flavanone isomerase (CHI) and dihydroflavonol reductase (DFR) mRNA steady-state levels are unaffected. However, in white floral tissue a severe reduction in CHI specific activity is found, accompanied by an altered signal for CHI protein on western blots. We find no correlation between the phenotypic effect of the antisense CHS gene and its chromosomal position. For some of the antisense CHS transformants the flower phenotype is highly variable. We demonstrate that pigmentation in these plants can be influenced by gibberellic acid and light, suggesting that the variable flower phenotype is caused by changes in physiological conditions during flower development. The results not only indicate that flower pigmentation in these plants reveals the variable expression of the antisense transgene, but also show that genomic sequences flanking the transgene may render its expression extremely susceptible to physiological conditions. © 1990 Springer-Verlag
    corecore