1,924 research outputs found
Direct identification and susceptibility testing of enteric bacilli from positive blood cultures using VITEK (GNI+/GNS-GA)
AbstractObjective To study the possibility of reporting results of identification and susceptibility testing of Gram-negative bacilli the same day as bacteremia is detected by using direct inoculation from positive blood cultures (Bactec 9240) into VITEK GNI+ and GNS-GA cards.Methods All blood cultures with Gram-negative enteric bacillus-like morphology on microscopy found to be positive on workdays between 15 June 1999 and 29 February 2000 were included. Identification and susceptibility testing were done by three methods: the direct method using a suspension made by differential centrifugation of positive blood culture broth for inoculation of the VITEK cards; the standard method using an inoculum made from an overnight culture on a solid media; and the routine method (reference method) using conventional testing.Results Of 169 isolates, the direct method resulted in 75% correct identifications, 9% misidentifications and 17% non-identifications. All misidentified isolateswere Escherichia coli, of which 80% were reported as Salmonella arizonae. Five biochemical tests yielded most of the aberrant results; correcting the citrate and malonate reactions in most cases led to correct identification by the VITEK database. Despite a negative H2S reaction, 11 E. coli isolates were reported as S. arizonae. Two-thirds (69%) of identifications were reported within 6 h, and 95% of these were correct. The direct susceptibility testing method was assessable for 140 isolates. Correct results were found in 99% of isolate-antimicrobial combinations, and 85% were reported within 6 h.Conclusion The direct VITEK method could correctly report identifications and susceptibility patterns within 6 h, making same-day reporting possible for almost two-thirds (63%) of bacteremic episodes with Gram-negative bacilli. These results could probably be improved by modification of the identification algorithms of the VITEK software
Probe-configuration dependent dephasing in a mesoscopic interferometer
Dephasing in a ballistic four-terminal Aharonov-Bohm geometry due to charge
and voltage fluctuations is investigated. Treating two terminals as voltage
probes, we find a strong dependence of the dephasing rate on the probe
configuration in agreement with a recent experiment by Kobayashi et al. (J.
Phys. Soc. Jpn. 71, 2094 (2002)). Voltage fluctuations in the measurement
circuit are shown to be the source of the configuration dependence.Comment: 4 pages, 3 figure
Spatial Periodicity of Galaxy Number Counts, CMB Anisotropy, and SNIa Hubble Diagram Based on the Universe Accompanied by a Non-Minimally Coupled Scalar Field
We have succeeded in establishing a cosmological model with a non-minimally
coupled scalar field that can account not only for the spatial
periodicity or the {\it picket-fence structure} exhibited by the galaxy -
relation of the 2dF survey but also for the spatial power spectrum of the
cosmic microwave background radiation (CMB) temperature anisotropy observed by
the WMAP satellite. The Hubble diagram of our model also compares well with the
observation of Type Ia supernovae. The scalar field of our model universe
starts from an extremely small value at around the nucleosynthesis epoch,
remains in that state for sufficiently long periods, allowing sufficient time
for the CMB temperature anisotropy to form, and then starts to grow in
magnitude at the redshift of , followed by a damping oscillation
which is required to reproduce the observed picket-fence structure of the
- relation. To realize such behavior of the scalar field, we have found
it necessary to introduce a new form of potential , with being a constant. Through this parameter ,
we can control the epoch at which the scalar field starts growing.Comment: 19 pages, 18 figures, Accepted for publication in Astrophysics &
Space Scienc
Asymmetric neutrino emission due to neutrino-nucleon scatterings in supernova magnetic fields
We derive the cross section of neutrino-nucleon scatterings in supernova
magnetic fields, including weak-magnetism and recoil corrections. Since the
weak interaction violates the parity, the scattering cross section
asymmetrically depends on the directions of the neutrino momenta to the
magnetic field; the origin of pulsar kicks may be explained by the mechanism.
An asymmetric neutrino emission (a drift flux) due to neutrino-nucleon
scatterings is absent at the leading level of , where
is the nucleon magneton, is the magnetic field strength, and is
the matter temperature at a neutrinosphere. This is because at this level the
drift flux of the neutrinos are exactly canceled by that of the antineutrinos.
Hence, the relevant asymmetry in the neutrino emission is suppressed by much
smaller coefficient of , where is the nucleon mass;
detailed form of the relevant drift flux is also derived from the scattering
cross section, using a simple diffusion approximation. It appears that the
asymmetric neutrino emission is too small to induce the observed pulsar kicks.
However, we note the fact that the drift flux is proportional to the deviation
of the neutrino distribution function from the value of thermal equilibrium at
neutrinosphere. Since the deviation can be large for non-electron neutrinos, it
is expected that there occurs cancellation between the deviation and the small
suppression factor of . Using a simple parameterization,
we show that the drift flux due to neutrino-nucleon scatterings may be
comparable to the leading term due to beta processes with nucleons, which has
been estimated to give a relevant kick velocity when the magnetic field is
sufficiently strong as -- G.Comment: 19 pages, 1 figure. Accepted by Physical Review
Temperature and Polarization Patterns in Anisotropic Cosmologies
We study the coherent temperature and polarization patterns produced in
homogeneous but anisotropic cosmological models. We show results for all
Bianchi types with a Friedman-Robertson-Walker limit (i.e. Types I, V,
VII, VII and IX) to illustrate the range of possible behaviour. We
discuss the role of spatial curvature, shear and rotation in the geodesic
equations for each model and establish some basic results concerning the
symmetries of the patterns produced. We also give examples of the
time-evolution of these patterns in terms of the Stokes parameters , and
.Comment: 24 pages, 7 Figures, submitted to JCAP. Revised version: numerous
references added, text rewritten, and errors corrected
Dynamic nuclear polarization and spin-diffusion in non-conducting solids
There has been much renewed interest in dynamic nuclear polarization (DNP),
particularly in the context of solid state biomolecular NMR and more recently
dissolution DNP techniques for liquids. This paper reviews the role of spin
diffusion in polarizing nuclear spins and discusses the role of the spin
diffusion barrier, before going on to discuss some recent results.Comment: submitted to Applied Magnetic Resonance. The article should appear in
a special issue that is being published in connection with the DNP Symposium
help in Nottingham in August 200
HySafe Standard benchmark Problem SBEP-V11: Predictions of hydrogen release and dispersion from a CGH2 bus in an underpass
One of the tasks of the HySafe Network of Excellence was the evaluation of available CFD tools and models for dispersion and combustion in selected hydrogen release scenarios identified as âstandard benchmark problemsâ (SBEPs). This paper presents the results of the HySafe standard benchmark problem SBEP-V11. The situation considered is a high pressure hydrogen jet release from a compressed gaseous hydrogen (CGH2) bus in an underpass. The bus considered is equipped with 8 cylinders of 5 kg hydrogen each at 35 MPa storage pressure. The underpass is assumed to be of the common beam and slab type construction with I-beams spanning across the highway at 3 m centres (normal to the bus), plus cross bracing between the main beams, and light armatures parallel to the bus direction. The main goal of the present work was to evaluate the role of obstructions on the underside of the bridge deck on the dispersion patterns and assess the potential for hydrogen accumulation. Four HySafe partners participated in this benchmark, with 4 different CFD codes, ADREA-HF, CFX, FLACS and FLUENT. Four scenarios were examined in total. In the base case scenario 20 kg of hydrogen was released in the basic geometry. In Sensitivity Test 1 the release position was moved so that the hydrogen jet could hit directly the light armature on the roof of the underpass. In Sensitivity Test 2 the underside of the bridge deck was flat. In Sensitivity Test 3 the release was from one cylinder instead of four (5 kg instead of 20). The paper compares the results predicted by the four different computational approaches and attempts to identify the reasons for observed disagreements. The paper also concludes on the effects of the obstructions on the underside of the bridge deck
Elucidating Individual Magnetic Contributions in Bi-Magnetic Fe3O4/Mn3O4 Core/Shell Nanoparticles by Polarized Powder Neutron Diffraction
Heterogeneous bi-magnetic nanostructured systems have had a sustained interest during the last decades owing to their unique magnetic properties and the wide range of derived potential applications. However, elucidating the details of their magnetic properties can be rather complex. Here, a comprehensive study of Fe3O4/Mn3O4 core/shell nanoparticles using polarized neutron powder diffraction, which allows disentangling the magnetic contributions of each of the components, is presented. The results show that while at low fields the Fe3O4 and Mn3O4 magnetic moments averaged over the unit cell are antiferromagnetically coupled, at high fields, they orient parallel to each other. This magnetic reorientation of the Mn3O4 shell moments is associated with a gradual evolution with the applied field of the local magnetic susceptibility from anisotropic to isotropic. Additionally, the magnetic coherence length of the Fe3O4 cores shows some unusual field dependence due to the competition between the antiferromagnetic interface interaction and the Zeeman energies. The results demonstrate the great potential of the quantitative analysis of polarized neutron powder diffraction for the study of complex multiphase magnetic materials
Current constraints on Cosmological Parameters from Microwave Background Anisotropies
We compare the latest observations of Cosmic Microwave Background (CMB)
Anisotropies with the theoretical predictions of the standard scenario of
structure formation. Assuming a primordial power spectrum of adiabatic
perturbations we found that the total energy density is constrained to be
while the energy density in baryon and Cold Dark
Matter (CDM) are and ,
(all at 68% C.L.) respectively. The primordial spectrum is consistent with
scale invariance, () and the age of the universe is
Gyrs. Adding informations from Large Scale Structure and
Supernovae, we found a strong evidence for a cosmological constant
and a value of the Hubble parameter
. Restricting this combined analysis to flat universes, we put
constraints on possible 'extensions' of the standard scenario. A gravity waves
contribution to the quadrupole anisotropy is limited to be (95%
c.l.). A constant equation of state for the dark energy component is bound to
be (95% c.l.). We constrain the effective relativistic degrees
of freedom and the neutrino chemical potential and (massless neutrinos).Comment: The status of cosmological parameters before WMAP. In press on Phys.
Rev. D., Rapid Communication, 6 pages, 5 figure
- âŠ